TABLE OF CONTENTS SECTION 232300 – REFRIGERANT PIPING | PART 1 - | - GENERAL | 1 | |----------|--------------------------------------------|----| | 1.1 | RELATED DOCUMENTS | 1 | | 1.2 | SUMMARY | 1 | | 1.3 | PERFORMANCE REQUIREMENTS | 1 | | 1.4 | ACTION SUBMITTALS | 1 | | 1.5 | INFORMATIONAL SUBMITTALS | 2 | | 1.6 | CLOSEOUT SUBMITTALS | 2 | | 1.7 | QUALITY ASSURANCE | 2 | | 1.8 | PRODUCT STORAGE AND HANDLING | 2 | | 1.9 | COORDINATION | 2 | | PART 2 - | - PRODUCTS | 2 | | 2.1 | COPPER TUBE AND FITTINGS | 2 | | 2.2 | VALVES AND SPECIALTIES | 3 | | 2.3 | REFRIGERANTS | | | PART 3 - | - EXECUTION | 7 | | 3.1 | PIPING APPLICATIONS FOR REFRIGERANT R-410A | | | 3.2 | VALVE AND SPECIALTY APPLICATIONS | 7 | | 3.3 | PIPING INSTALLATION | 8 | | 3.4 | PIPE JOINT CONSTRUCTION | 10 | | 3.5 | HANGERS AND SUPPORTS | 10 | | 3.6 | FIELD QUALITY CONTROL | 11 | | 3.7 | SYSTEM CHARGING | 11 | | 3.8 | ADJUSTING | 11 | #### SECTION 232300 - REFRIGERANT PIPING #### PART 1 - GENERAL # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. # 1.2 SUMMARY A. This Section includes refrigerant piping used for air-conditioning applications. # 1.3 PERFORMANCE REQUIREMENTS - A. Line Test Pressure for Refrigerant R-410A: - 1. Suction Lines for Air-Conditioning Applications: 300 psig. - 2. Suction Lines for Heat-Pump Applications: 535 psig. - 3. Hot-Gas and Liquid Lines: 535 psig. ## 1.4 ACTION SUBMITTALS - A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following: - 1. Thermostatic expansion valves. - 2. Solenoid valves. - 3. Hot-gas bypass valves. - 4. Filter dryers. - 5. Strainers. - 6. Pressure-regulating valves. - B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment. - 1. Shop Drawing Scale: 1/4 inch equals 1 foot. - 2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment. #### 1.5 INFORMATIONAL SUBMITTALS - A. Welding certificates. - B. Field quality-control test reports. #### 1.6 CLOSEOUT SUBMITTALS A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals. # 1.7 QUALITY ASSURANCE - A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications." - B. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems." - C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components." # 1.8 PRODUCT STORAGE AND HANDLING A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed. # 1.9 COORDINATION A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories." # **PART 2 - PRODUCTS** # 2.1 COPPER TUBE AND FITTINGS - A. Copper Tube: ASTM B 280, Type ACR. - B. Wrought-Copper Fittings: ASME B16.22. - C. Brazing Filler Metals: AWS A5.8. ### D. Flexible Connectors: - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket. - 2. End Connections: Socket ends. - 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inchlong assembly. - 4. Pressure Rating: Factory test at minimum 500 psig. - 5. Maximum Operating Temperature: 250 deg F. #### 2.2 VALVES AND SPECIALTIES # A. Diaphragm Packless Valves: - 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern. - 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring. - 3. Operator: Rising stem and hand wheel. - 4. Seat: Nylon. - 5. End Connections: Socket, union, or flanged. - 6. Working Pressure Rating: 500 psig. - 7. Maximum Operating Temperature: 275 deg F. # B. Packed-Angle Valves: - 1. Body and Bonnet: Forged brass or cast bronze. - 2. Packing: Molded stem, back seating, and replaceable under pressure. - 3. Operator: Rising stem. - 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene. - 5. Seal Cap: Forged-brass or valox hex cap. - 6. End Connections: Socket, union, threaded, or flanged. - 7. Working Pressure Rating: 500 psig. - 8. Maximum Operating Temperature: 275 deg F. # C. Check Valves: - 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern. - 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug. - 3. Piston: Removable polytetrafluoroethylene seat. - 4. Closing Spring: Stainless steel. - 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal. - 6. End Connections: Socket, union, threaded, or flanged. - 7. Maximum Opening Pressure: 0.50 psig. - 8. Working Pressure Rating: 500 psig. - 9. Maximum Operating Temperature: 275 deg F. #### D. Service Valves: - 1. Body: Forged brass with brass cap including key end to remove core. - 2. Core: Removable ball-type check valve with stainless-steel spring. - 3. Seat: Polytetrafluoroethylene. - 4. End Connections: Copper spring. - 5. Working Pressure Rating: 500 psig. - E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL. - 1. Body and Bonnet: Plated steel. - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel. - 3. Seat: Polytetrafluoroethylene. - 4. End Connections: Threaded. - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil. - 6. Working Pressure Rating: 400 psig. - 7. Maximum Operating Temperature: 240 deg F. - 8. Manual operator. - F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL. - 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal. - 2. Piston, Closing Spring, and Seat Insert: Stainless steel. - 3. Seat Disc: Polytetrafluoroethylene. - 4. End Connections: Threaded. - 5. Working Pressure Rating: 400 psig. - Maximum Operating Temperature: 240 deg F. - G. Thermostatic Expansion Valves: Comply with ARI 750. - 1. Body, Bonnet, and Seal Cap: Forged brass or steel. - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel. - 3. Packing and Gaskets: Non-asbestos. - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge. - 5. Suction Temperature: 40 deg F. - 6. Superheat: Adjustable. - 7. Reverse-flow option (for heat-pump applications). - 8. End Connections: Socket, flare, or threaded union. - 9. Working Pressure Rating: 450 psig. - H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL. - 1. Body, Bonnet, and Seal Cap: Ductile iron or steel. - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel. - 3. Packing and Gaskets: Non-asbestos. - 4. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel. - 5. Seat: Polytetrafluoroethylene. - 6. Equalizer: Internal. - 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil. - 8. End Connections: Socket. - 9. Throttling Range: Maximum 5 psig. - 10. Working Pressure Rating: 500 psig. - 11. Maximum Operating Temperature: 240 deg F. # I. Straight-Type Strainers: - 1. Body: Welded steel with corrosion-resistant coating. - 2. Screen: 100-mesh stainless steel. - 3. End Connections: Socket or flare. - 4. Working Pressure Rating: 500 psig. - 5. Maximum Operating Temperature: 275 deg F. # J. Angle-Type Strainers: - 1. Body: Forged brass or cast bronze. - 2. Drain Plug: Brass hex plug. - 3. Screen: 100-mesh monel. - 4. End Connections: Socket or flare. - 5. Working Pressure Rating: 500 psig. - 6. Maximum Operating Temperature: 275 deg F. # K. Moisture/Liquid Indicators: - 1. Body: Forged brass. - 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen. - 3. Indicator: Color coded to show moisture content in ppm. - 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm. - 5. End Connections: Socket or flare. - 6. Working Pressure Rating: 500 psig. - 7. Maximum Operating Temperature: 240 deg F. # L. Replaceable-Core Filter Dryers: Comply with ARI 730. - 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets. - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support. - 3. Desiccant Media: Activated alumina. - 4. Designed for reverse flow (for heat-pump applications). - 5. End Connections: Socket. - 6. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement. - 7. Maximum Pressure Loss: 2 psig. - 8. Working Pressure Rating: 500 psig. - 9. Maximum Operating Temperature: 240 deg F. - M. Permanent Filter Dryers: Comply with ARI 730. - 1. Body and Cover: Painted-steel shell. - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support. - 3. Desiccant Media: Activated alumina. - 4. Designed for reverse flow (for heat-pump applications). - 5. End Connections: Socket. - 6. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement. - 7. Maximum Pressure Loss: 2 psig. - 8. Working Pressure Rating: 500 psig. - 9. Maximum Operating Temperature: 240 deg F. # N. Mufflers: - 1. Body: Welded steel with corrosion-resistant coating. - 2. End Connections: Socket or flare. - 3. Working Pressure Rating: 500 psig. - 4. Maximum Operating Temperature: 275 deg F. - O. Receivers: Comply with ARI 495. - 1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL. - 2. Comply with UL 207; listed and labeled by an NRTL. - 3. Body: Welded steel with corrosion-resistant coating. - 4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve. - 5. End Connections: Socket or threaded. - 6. Working Pressure Rating: 500 psig. - 7. Maximum Operating Temperature: 275 deg F. - P. Liquid Accumulators: Comply with ARI 495. - 1. Body: Welded steel with corrosion-resistant coating. - 2. End Connections: Socket or threaded. - 3. Working Pressure Rating: 500 psig. - 4. Maximum Operating Temperature: 275 deg F. # 2.3 REFRIGERANTS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Atofina Chemicals, Inc. - 2. DuPont Company; Fluorochemicals Div. - 3. Honeywell, Inc.; Genetron Refrigerants. - 4. INEOS Fluor Americas LLC. - B. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane. #### PART 3 - EXECUTION #### 3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A - A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with [brazed] joints. - B. Hot-Gas and Liquid Lines[, and Suction Lines for Heat-Pump Applications]: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with [brazed] [joints. - C. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, annealed- or drawn-temper tubing and wrought-copper fittings with [brazed] joints. #### 3.2 VALVE AND SPECIALTY APPLICATIONS - A. Install diaphragm packless valves in suction and discharge lines of compressor. - B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers. - C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection. - D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers. - E. Install a full-sized, three-valve bypass around filter dryers. - F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top. - G. Install thermostatic expansion valves as close as possible to distributors on evaporators. - 1. Install valve so diaphragm case is warmer than bulb. - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line. - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location. - H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15. - I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube. - J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected: - 1. Solenoid valves. - 2. Thermostatic expansion valves. - 3. Hot-gas bypass valves. - 4. Compressor. - K. Install filter dryers in liquid line between compressor and thermostatic expansion valve. - L. Install receivers sized to accommodate pump-down charge. - M. Install flexible connectors at compressors. #### 3.3 PIPING INSTALLATION - A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings. - B. Install refrigerant piping according to ASHRAE 15. - C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas. - D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise. - E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal. - F. Install piping adjacent to machines to allow service and maintenance. - G. Install piping free of sags and bends. - H. Install fittings for changes in direction and branch connections. - I. Select system components with pressure rating equal to or greater than system operating pressure. - J. Refer to Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation. - K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings. - L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces. - M. Install refrigerant piping in protective conduit where installed belowground. - N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury. - O. Slope refrigerant piping as follows: - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor. - 2. Install horizontal suction lines with a uniform slope downward to compressor. - 3. Install traps and double risers to entrain oil in vertical runs. - 4. Liquid lines may be installed level. - P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb. - Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures: - 1. Shot blast the interior of piping. - 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape. - 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt. - 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint. - 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe. - 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow. - R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation. - S. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment." - T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping." - U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping." - V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping." # 3.4 PIPE JOINT CONSTRUCTION - A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe. - B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly. - C. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube." - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe. - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel. # 3.5 HANGERS AND SUPPORTS - A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment." - B. Install the following pipe attachments: - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long. - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer. - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze. - 4. Spring hangers to support vertical runs. - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe. - C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes: - 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch. - 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch. - 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch. - 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch. - 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch. - 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch. - 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch. - D. Support multifloor vertical runs at least at each floor. #### 3.6 FIELD QUALITY CONTROL - A. Perform tests and inspections and prepare test reports. - B. Tests and Inspections: - 1. Comply with ASME B31.5, Chapter VI. - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure. - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article. - a. Fill system with nitrogen to the required test pressure. - b. System shall maintain test pressure at the manifold gage throughout duration of test. - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints. - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved. ## 3.7 SYSTEM CHARGING - A. Charge system using the following procedures: - 1. Install core in filter dryers after leak test but before evacuation. - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging. - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig. - 4. Charge system with a new filter-dryer core in charging line. #### 3.8 ADJUSTING - A. Adjust thermostatic expansion valve to obtain proper evaporator superheat. - B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure. 1854 CT-12, GALES FERRY, CT 06335 - C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature. - D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions: - 1. Open shutoff valves in condenser water circuit. - 2. Verify that compressor oil level is correct. - 3. Open compressor suction and discharge valves. - 4. Open refrigerant valves except bypass valves that are used for other purposes. - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings. - E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established. **END OF SECTION 232300**