TABLE OF CONTENTS SECTION 230593 – TESTING, ADJUSTING, AND BALANCING FOR HVAC | PART 1 - | - GENERAL | 1 | |----------|----------------------------------------------|----| | 1.1 | RELATED DOCUMENTS | 1 | | 1.2 | SUMMARY | 1 | | 1.3 | DEFINITIONS | 1 | | 1.4 | SUBMITTALS | 1 | | 1.5 | QUALITY ASSURANCE | 2 | | 1.6 | PROJECT CONDITIONS | 3 | | 1.7 | COORDINATION | | | PART 2 | - PRODUCTS (Not Applicable) | 3 | | PART 3 | - EXECUTION | 3 | | 3.1 | TAB SPECIALISTS | 3 | | 3.2 | EXAMINATION | 3 | | 3.3 | PREPARATION | 4 | | 3.4 | GENERAL PROCEDURES FOR TESTING AND BALANCING | | | 3.5 | GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS | 5 | | 3.6 | PROCEDURES FOR MOTORS | 6 | | 3.7 | PROCEDURES FOR CONDENSING UNITS | 6 | | 3.8 | PROCEDURES FOR HEAT-TRANSFER COILS | 7 | | 3.9 | TOLERANCES | 7 | | 3.10 | REPORTING | 7 | | 3.11 | FINAL REPORT | 8 | | 3.12 | INSPECTIONS | | | 3.13 | ADDITIONAL TESTS | 15 | ## SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC #### PART 1 - GENERAL ## 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. # 1.2 SUMMARY - A. Section Includes: - 1. Balancing Air Systems: - a. Constant-volume air systems. #### 1.3 DEFINITIONS - A. AABC: Associated Air Balance Council. - B. NEBB: National Environmental Balancing Bureau. - C. TAB: Testing, adjusting, and balancing. - D. TABB: Testing, Adjusting, and Balancing Bureau. - E. TAB Specialist: An entity engaged to perform TAB Work. #### 1.4 SUBMITTALS - A. Qualification Data: Within 15 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article. - B. Contract Documents Examination Report: Within 15 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3. - C. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article. - D. Certified TAB reports. - E. Sample report forms. - F. Instrument calibration reports, to include the following: - 1. Instrument type and make. - 2. Serial number. - 3. Application. - 4. Dates of use. - 5. Dates of calibration. # 1.5 QUALITY ASSURANCE - A. TAB Contractor Qualifications: Engage a TAB entity certified by [AABC] [NEBB] [or] [TABB]. - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by [AABC] [NEBB] [or] [TABB]. - 2. TAB Technician: Employee of the TAB contractor and who is certified by [AABC] [NEBB] [or] [TABB] as a TAB technician. - B. TAB Conference: Meet with Commissioning Authority on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location. - 1. Agenda Items: - a. The Contract Documents examination report. - b. The TAB plan. - c. Coordination and cooperation of trades and subcontractors. - d. Coordination of documentation and communication flow. - C. Certify TAB field data reports and perform the following: - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports. - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification. - D. TAB Report Forms: Use standard TAB contractor's forms approved by [Commissioning Authority]. - E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation." #### 1.6 PROJECT CONDITIONS - A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations. - B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations. # 1.7 COORDINATION - A. Notice: Provide [seven] days' advance notice for each test. Include scheduled test dates and times. - B. Perform TAB after leakage and pressure tests on [air] [and] [water] distribution systems have been satisfactorily completed. PART 2 - PRODUCTS (Not Applicable) # PART 3 - EXECUTION # 3.1 TAB SPECIALISTS - A. Subject to compliance with requirements, [engage one of the following] [available TAB contractors that may be engaged include, but are not limited to, the following]: - 1. Wings Testing and Balancing ## 3.2 EXAMINATION - A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment. - B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible. - C. Examine the approved submittals for HVAC systems and equipment. - D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls. - E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Division 23 Section "[Metal Ducts] " and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required. - F. Examine equipment performance data including fan and pump curves. - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions. - 3. Duct Design." Compare results with the design data and installed conditions. - G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed. - H. Examine test reports specified in individual system and equipment Sections. - I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation. - J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning. - K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations. - L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows. - M. Examine heat-transfer coils for correct piping connections and for clean and straight fins. - N. Examine system pumps to ensure absence of entrained air in the suction piping. - O. Examine operating safety interlocks and controls on HVAC equipment. - P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values. #### 3.3 PREPARATION A. Prepare a TAB plan that includes strategies and step-by-step procedures. - B. Complete system-readiness checks and prepare reports. Verify the following: - 1. Permanent electrical-power wiring is complete. - 2. Hydronic systems are filled, clean, and free of air. - 3. Automatic temperature-control systems are operational. - 4. Equipment and duct access doors are securely closed. - 5. Balance, smoke, and fire dampers are open. - 6. Isolating and balancing valves are open and control valves are operational. - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided. - 8. Windows and doors can be closed so indicated conditions for system operations can be met. # 3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING - A. Perform testing and balancing procedures on each system according to the procedures contained in [AABC's "National Standards for Total System Balance",] [ASHRAE 111,] [NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems",] [SMACNA's "HVAC Systems Testing, Adjusting, and Balancing",] and in this Section. - 1. Comply with requirements in ASHRAE 62.1-2004, Section 7.2.2, "Air Balancing." - B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures. - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts. - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Division 23 Section "Air Duct Accessories." - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Division 23 Section "HVAC Insulation." - C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings. - D. Take and report testing and balancing measurements in [inch-pound (IP)] units. # 3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS - A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes. - B. Prepare schematic diagrams of systems' "as-built" duct layouts. - C. For variable-air-volume systems, develop a plan to simulate diversity. - D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements. - E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaustair dampers through the supply-fan discharge and mixing dampers. - F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters. - G. Verify that motor starters are equipped with properly sized thermal protection. - H. Check dampers for proper position to achieve desired airflow path. - I. Check for airflow blockages. - J. Check condensate drains for proper connections and functioning. - K. Check for proper sealing of air-handling-unit components. - L. Verify that air duct system is sealed as specified in Division 23 Section "Metal Ducts." #### 3.6 PROCEDURES FOR MOTORS - A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data: - 1. Manufacturer's name, model number, and serial number. - 2. Motor horsepower rating. - 3. Motor rpm. - 4. Efficiency rating. - 5. Nameplate and measured voltage, each phase. - 6. Nameplate and measured amperage, each phase. - 7. Starter thermal-protection-element rating. - B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data. ## 3.7 PROCEDURES FOR CONDENSING UNITS - A. Verify proper rotation of fans. - B. Measure entering- and leaving-air temperatures. - C. Record compressor data. #### 3.8 PROCEDURES FOR HEAT-TRANSFER COILS - A. Measure, adjust, and record the following data for each water coil: - 1. Entering- and leaving-water temperature. - 2. Water flow rate. - 3. Water pressure drop. - 4. Dry-bulb temperature of entering and leaving air. - 5. Wet-bulb temperature of entering and leaving air for cooling coils. - 6. Airflow. - 7. Air pressure drop. - B. Measure, adjust, and record the following data for each electric heating coil: - 1. Nameplate data. - 2. Airflow. - 3. Entering- and leaving-air temperature at full load. - 4. Voltage and amperage input of each phase at full load and at each incremental stage. - 5. Calculated kilowatt at full load. - 6. Fuse or circuit-breaker rating for overload protection. - C. Measure, adjust, and record the following data for each refrigerant coil: - 1. Dry-bulb temperature of entering and leaving air. - 2. Wet-bulb temperature of entering and leaving air. - 3. Airflow. - 4. Air pressure drop. - 5. Refrigerant suction pressure and temperature. ### 3.9 TOLERANCES - A. Set HVAC system's air flow rates and water flow rates within the following tolerances: - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: [Plus or minus 10 percent]. - 2. Air Outlets and Inlets: [Plus or minus 10 percent]. - 3. Heating-Water Flow Rate: [Plus or minus 10 percent]. - 4. Cooling-Water Flow Rate: [Plus or minus 10 percent]. # 3.10 REPORTING A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices. B. Status Reports: Prepare [biweekly] [progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors. #### 3.11 FINAL REPORT - A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems. - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer. - 2. Include a list of instruments used for procedures, along with proof of calibration. - B. Final Report Contents: In addition to certified field-report data, include the following: - Fan curves. - 2. Manufacturers' test data. - 3. Field test reports prepared by system and equipment installers. - 4. Other information relative to equipment performance; do not include Shop Drawings and product data. - C. General Report Data: In addition to form titles and entries, include the following data: - 1. Title page. - 2. Name and address of the TAB contractor. - 3. Project name. - 4. Project location. - 5. Architect's name and address. - 6. Engineer's name and address. - 7. Contractor's name and address. - 8. Report date. - 9. Signature of TAB supervisor who certifies the report. - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report. - 11. Summary of contents including the following: - a. Indicated versus final performance. - b. Notable characteristics of systems. - c. Description of system operation sequence if it varies from the Contract Documents. - 12. Nomenclature sheets for each item of equipment. - 13. Data for terminal units, including manufacturer's name, type, size, and fittings. - 14. Notes to explain why certain final data in the body of reports vary from indicated values. - 15. Test conditions for fans and pump performance forms including the following: - a. Settings for outdoor-, return-, and exhaust-air dampers. - b. Conditions of filters. - c. Cooling coil, wet- and dry-bulb conditions. - d. Face and bypass damper settings at coils. - e. Fan drive settings including settings and percentage of maximum pitch diameter. - f. Inlet vane settings for variable-air-volume systems. - g. Settings for supply-air, static-pressure controller. - h. Other system operating conditions that affect performance. - D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following: - 1. Quantities of outdoor, supply, return, and exhaust airflows. - 2. Water and steam flow rates. - 3. Duct, outlet, and inlet sizes. - 4. Pipe and valve sizes and locations. - 5. Terminal units. - 6. Balancing stations. - 7. Position of balancing devices. - E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following: - 1. Unit Data: - a. Unit identification. - b. Location. - c. Make and type. - d. Model number and unit size. - e. Manufacturer's serial number. - f. Unit arrangement and class. - g. Discharge arrangement. - h. Sheave make, size in inches, and bore. - i. Center-to-center dimensions of sheave, and amount of adjustments in inches. - j. Number, make, and size of belts. - k. Number, type, and size of filters. - 2. Motor Data: - a. Motor make, and frame type and size. - b. Horsepower and rpm. - c. Volts, phase, and hertz. - d. Full-load amperage and service factor. - e. Sheave make, size in inches, and bore. - f. Center-to-center dimensions of sheave, and amount of adjustments in inches. - 3. Test Data (Indicated and Actual Values): - a. Total air flow rate in cfm. - b. Total system static pressure in inches wg. - c. Fan rpm. - d. Discharge static pressure in inches wg. - e. Filter static-pressure differential in inches wg. - f. Preheat-coil static-pressure differential in inches wg. - g. Cooling-coil static-pressure differential in inches wg. - h. Heating-coil static-pressure differential in inches wg. - i. Outdoor airflow in cfm. - j. Return airflow in cfm. - k. Outdoor-air damper position. - I. Return-air damper position. - m. Vortex damper position. # Apparatus-Coil Test Reports: #### 1. Coil Data: - a. System identification. - b. Location. - c. Coil type. - d. Number of rows. - e. Fin spacing in fins per inch o.c. - f. Make and model number. - g. Face area in sq. ft.. - h. Tube size in NPS. - i. Tube and fin materials. - j. Circuiting arrangement. # 2. Test Data (Indicated and Actual Values): - a. Air flow rate in cfm. - b. Average face velocity in fpm. - c. Air pressure drop in inches wg. - d. Outdoor-air, wet- and dry-bulb temperatures in deg F. - e. Return-air, wet- and dry-bulb temperatures in deg F. - f. Entering-air, wet- and dry-bulb temperatures in deg F. - g. Leaving-air, wet- and dry-bulb temperatures in deg F. - h. Water flow rate in gpm. - i. Water pressure differential in feet of head or psig. - j. Entering-water temperature in deg F. - k. Leaving-water temperature in deg F. - I. Refrigerant expansion valve and refrigerant types. - m. Refrigerant suction pressure in psig. - n. Refrigerant suction temperature in deg F. - o. Inlet steam pressure in psig. - G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following: #### 1. Unit Data: - a. System identification. - b. Location. - c. Make and type. - d. Model number and unit size. - e. Manufacturer's serial number. - f. Fuel type in input data. - g. Output capacity in Btu/h. - h. Ignition type. - i. Burner-control types. - j. Motor horsepower and rpm. - k. Motor volts, phase, and hertz. - I. Motor full-load amperage and service factor. - m. Sheave make, size in inches, and bore. - n. Center-to-center dimensions of sheave, and amount of adjustments in inches. # 2. Test Data (Indicated and Actual Values): - a. Total air flow rate in cfm. - b. Entering-air temperature in deg F. - c. Leaving-air temperature in deg F. - d. Air temperature differential in deg F. - e. Entering-air static pressure in inches wg. - f. Leaving-air static pressure in inches wg. - g. Air static-pressure differential in inches wg. - h. Low-fire fuel input in Btu/h. - i. High-fire fuel input in Btu/h. - j. Manifold pressure in psig. - k. High-temperature-limit setting in deg F. - I. Operating set point in Btu/h. - m. Motor voltage at each connection. - n. Motor amperage for each phase. - o. Heating value of fuel in Btu/h. # H. Fan Test Reports: For supply, return, and exhaust fans, include the following: ### 1. Fan Data: - a. System identification. - b. Location. - c. Make and type. - d. Model number and size. - e. Manufacturer's serial number. - f. Arrangement and class. - g. Sheave make, size in inches, and bore. - h. Center-to-center dimensions of sheave, and amount of adjustments in inches. ## 2. Motor Data: - a. Motor make, and frame type and size. - b. Horsepower and rpm. - c. Volts, phase, and hertz. - d. Full-load amperage and service factor. - e. Sheave make, size in inches, and bore. - f. Center-to-center dimensions of sheave, and amount of adjustments in inches. - g. Number, make, and size of belts. - 3. Test Data (Indicated and Actual Values): - a. Total airflow rate in cfm. - b. Total system static pressure in inches wg. - c. Fan rpm. - d. Discharge static pressure in inches wg. - e. Suction static pressure in inches wg. - I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following: - 1. Report Data: - a. System and air-handling-unit number. - b. Location and zone. - c. Traverse air temperature in deg F. - d. Duct static pressure in inches wg. - e. Duct size in inches. - f. Duct area in sq. ft.. - g. Indicated air flow rate in cfm. - h. Indicated velocity in fpm. - i. Actual air flow rate in cfm. - j. Actual average velocity in fpm. - k. Barometric pressure in psig. - J. Air-Terminal-Device Reports: - 1. Unit Data: - a. System and air-handling unit identification. - b. Location and zone. - c. Apparatus used for test. - d. Area served. - e. Make. - f. Number from system diagram. - g. Type and model number. - h. Size. - i. Effective area in sq. ft.. - 2. Test Data (Indicated and Actual Values): - a. Air flow rate in cfm. - b. Air velocity in fpm. - c. Preliminary air flow rate as needed in cfm. - d. Preliminary velocity as needed in fpm. - e. Final air flow rate in cfm. - f. Final velocity in fpm. - g. Space temperature in deg F. - K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following: - 1. Unit Data: - System and air-handling-unit identification. - b. Location and zone. - c. Room or riser served. - d. Coil make and size. - e. Flowmeter type. - 2. Test Data (Indicated and Actual Values): - a. Air flow rate in cfm. - b. Entering-water temperature in deg F. - c. Leaving-water temperature in deg F. - d. Water pressure drop in feet of head or psig. - e. Entering-air temperature in deg F. - f. Leaving-air temperature in deg F. - L. Instrument Calibration Reports: - 1. Report Data: - 2. - a. Instrument type and make. - b. Serial number. - c. Application. - d. Dates of use. - e. Dates of calibration. - 3.12 INSPECTIONS - A. Initial Inspection: - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report. - 2. Check the following for each system: - a. Measure airflow of at least [10] percent of air outlets. - b. Measure water flow of at least [5] percent of terminals. - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point. - d. Verify that balancing devices are marked with final balance position. - e. Note deviations from the Contract Documents in the final report. # B. Final Inspection: - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by [Commissioning Authority]. - 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of [Commissioning Authority]. - 3. [Commissioning Authority] shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day. - 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED." - 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected. - C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows: - Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection. - 2. rements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection. - 3. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment. - D. Prepare test and inspection reports. ## 3.13 ADDITIONAL TESTS - A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions. - B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions. **END OF SECTION 230593**