

ANGUS McDONALD GARY SHARPE & ASSOCIATES, INC. SINCE 1966

Avery Brook Homes

Septic System Effluent Renovation Analysis

96-100 Stoddards Wharf Road Ledyard, Connecticut

June 20, 2024

Overview
Scope of report
Soil Testing4
Soil Permeability5
Table 1 – Falling Head Permeability Calculations5Table 2 – Washed Sieve Analysis Summary6Ground Water Monitoring and Ground Water Contours7
Hydraulic Gradients7
Unsaturated Soil Thickness8
Leaching Field Sizing and Type9
Effluent Travel Time to Billings Avery Pond9
 Figure 1 - Travel Time flow paths superimposed on a portion of April 8, 2024 Groundwater Contour Map Lots 16, 17, & 18
Mound Calculations and Leachfield Elevation above Groundwater for Virus Removal 13
Nitrogen Analysis13
Figure 3 – Average Runoff Coefficient Calculation16Figure 4 – Infiltration Rate Determination17Figure 5 – Nitrogen Concentration Analysis (48 gpd)18Table 3 - Potion of Groton Public Utilities Metered Water Usage of all ResidentialProperties on Public Water in Ledyard19Figure 6 – Nitrogen Concentration Analysis (Pre-2006 model @ 150 gpd/bedroom). 20Massachusetts Alternative Septic System Test Center report on Geomatrix GST21
Phosphorous Analysis22
Table 4 – Recommended System Lengths 23 Conclusion 23

Overview

The proposed Avery Brook Homes project is an 18 lot, single family residential subdivision submitted to the Ledyard Planning & Zoning Commission for consideration under the Affordable Housing Appeals Act (8-30g). The property is approximately 6.38 acres, located on the North side of Stoddards Wharf Road -CT Route 214. Each lot will be served by a drilled bedrock cased well and subsurface sewage disposal system (SSDS), to be reviewed and approved prior to construction by Ledge Light Health District (LLHD). Conceptual well and SSDS locations are depicted on the subdivision plan prepared by Dieter and Gardner, Inc. and last revised March 25, 2024, which have been approved for subdivision purposes by LLHD based on 3 bedroom homes.

The property is currently undeveloped, with surface cover consisting of partially overgrown agricultural fields with hardwood forest around the perimeter. The general slope of the land is from Northwest to Southeast, the lowest point being along the easterly boundary. We are unable to ascertain original slopes or drainage patterns northerly, easterly or westerly of the site because it appears that a significant volume of earth materials were removed 50 or more years ago, in some places to a depth of approximately 25'. It is likely that the excavation was a sand and gravel operation, since much of the subject site is underlain by sand and gravel.

Soils on the site mapped by the USDA Soil Conservation Service consist primarily of Agawam fine sandy loams and Hinckley gravelly sandy loams, with small areas of other soils mapped around the perimeter. Agawam fine sandy loam is a stratified drift sandy soil, typically exhibiting moderate-high soil permeabilities and deep depth to groundwater. Hinckley gravelly sandy loams are glacial outwash soils with high soil permeabilities and deep depth to groundwater.

The site lies within the public water supply watershed of the City of Groton. The city owns Billings Avery Pond, located to the Northwest of the subject site. Billings Avery Pond is connected to the City of Groton reservoir system by a canal (Stoddards Brook) constructed by the city. This canal diverts water on demand from the pond, which would otherwise discharge to the Thames River via Billings Avery Brook.

Scope of report

The Avery Brook Homes 18 lot Affordable Housing subdivision application is currently being reviewed by the Ledyard Planning & Zoning Commission. In late 2022-early 2023, the Ledyard Inland Wetland Commission requested an effluent renovation analysis of proposed Subsurface Sewage Disposal Systems (SSDS) for what was then proposed as a 26 lot subdivision proposal on 9.21 acres. At that time, three specific renovation parameters evaluated were Nitrogenous compound concentrations, effluent plume travel time and exposure from viruses. The analysis focused on these parameters, but of necessity touched on other aspects of effluent movement and renovation in soil and groundwater. The methodology presented was based on the Connecticut Department of Energy and Environmental Protection (DEEP) publication "Guidance for Large-Scale on-site wastewater Renovation Systems" dated February 2006. This report did and will refer to this publication as the *Manual*. All single-family residential SSDS on the site are subject to permitting for construction and discharge by the local Health District (Ledge Light Health District) under Connecticut Public Health Code regulations. There are no discharge permits required by DEEP for single-family residential SSDS design and construction on any proposed lot on the site. Evaluating the development wastewater discharges by use of DEEP criteria is intended to provide additional assurance that the proposal is reasonable, beyond meeting all applicable Connecticut Public Health Code regulations.

During the 2022-2023 Public Hearing process, the City of Groton filed as an intervener. The Commission and City asked questions of the applicant regarding various aspects of this report, and requesting additional analysis for constituents not included in the original report.

The questions raised in 2022-2023 and considered here in addition to already evaluated parameters, are as follows:

- 1. Phosphorous- analysis of potential impacts from Phosphorous compounds in domestic sewage. We have included an analysis in this report, conducted as recommended in the *Manual*.
- Groundwater contour mapping-additional groundwater monitoring wells were installed by the applicant's surveyor and groundwater depths measured during the spring of 2024. New groundwater contour mapping was generated and is included herein, which clarifies groundwater flow direction and gradient. Bacterial renovation travel time calculations have been revised and updated based on the new groundwater mapping.
- 3. Residential discharge as used for Nitrogen analysis- in 2023 this report had estimated water use from 3 bedroom homes at 135 gallons per day (GPD), or 45 GPD/bedroom. Water use data from Groton Public Utilities covering the time period July 2023-April 2024, submitted to the hearing record by the Applicant, indicates an average of 145 GPD/ home (or 48 GPD/bedroom assuming an average of 3 bedrooms per home). This data covers all residential properties in the Town of Ledyard served by public water during that time period, with over 15,000 meter readings covering approximately 1,500 residences. We have revised the Nitrogen calculations to correspond with the metered water use.

Soil Testing

Soil testing for subdivision approval was performed by Dieter & Gardner in cooperation with the Ledge Light Health District (LLHD). Subsequent soil testing (Test holes 100-115) was performed under the supervision of Angus McDonald/Gary Sharpe and Assoc. for the purpose of gathering soil samples for permeability determination, and installing groundwater level observation wells. Test hole locations for test hole number 100-115 and 200-209 are depicted on the ground water contour maps in **Appendix C** of this report. The soil logs for test holes 100-109 can be found in **Appendix**

<u>D</u> of this report, from which soil samples were gathered for permeability determination. Dieter & Gardner supervised installation of groundwater monitor wells #200-209 in March 2024, which were located and monitored by them. The groundwater elevations recorded are depicted on groundwater contour mapping in <u>Appendix C.</u>

Soil Permeability

The permeability of the soil on the site was determined using core tubes and washed sieve analysis from bag samples that were collected during each of the rounds of testing. The core tubes were analyzed using falling head permeability tests, and the bag samples were examined using grain size analysis. The results from all of the soil tests were compiled into the following tables that show the permeability average and geometric mean.

For reference, the majority of the site is mapped as either Agawam Fine sandy loam or Hinckley gravelly sandy loam by the United States Department of Agriculture, Soil Conservation Service. Udorthent soils mapped by SCS to the North, West and East of the site, on the adjacent property of City of Groton, appear to be the result of historical gravel mining, and are assumed to have been Agawam or Hinckley soils. The permeability range given for Agawam soils is 12-40 ft/day, for Hinckley >40 ft/day.

<u>Test</u> Hole	Description	<u>Depth,</u> in	<u>Tube,</u> in (T)	<u>T-L</u>	<u>L in</u>	<u>H1 in</u>	<u>H2 in</u>	<u>H1-</u> H2 in	<u>T</u> min	<u>H1+H2/2</u>	<u>K</u> <u>ft/min</u>	<u>K</u> <u>ft/day</u>
100	C-Horizon	47	12	9.75	2.25	11.875	8.25	3.625	90	10.1	0.0008	1.1
101	D-Horizon	38	11.75	8.75	3	11.625	11.25	0.375	90	11.4	0.0001	0.1
102	C-Horizon	46	11.875	9	2.875	11.75	5.625	6.125	11	8.7	0.0154	22.1
103	C-Horizon	48	11.75	9.5	2.25	11.625	6.5	5.125	0.33	9.1	0.3213	462.7
104	C-Horizon	48	12	8.75	3.25	11.875	4.875	7	1	8.4	0.2264	326.0
105	C-Horizon	48	12	7.875	4.125	11.875	6.625	5.25	2	9.3	0.0976	140.5
106	C-Horizon	57	11.375	9.25	2.125	11.75	4.5	7.25	1	8.1	0.2	227.5
108	C-Horizon	48	12	9.5	2.5	11.875	6.875	5	1.5	9.4	0.1	106.7
109	C-Horizon	52	12	9.5	2.5	11.875	7.75	4.125	3	9.8	0.0	42.0
Rec	compacted San	n <mark>ples (1/</mark> 1	<u>0/23)</u>									
102*	recompacted	172	12	8.25	3.75	11.87	7.25	4.62	3	9.6	0.0503	72.5
103*	recompacted	168	12	7.12	4.88	11.75	7	4.75	1.5	9.4	0.1374	197.8
111*	recompacted	190	12	6.38	5.62	11.87	7.495	4.375	1.5	9.7	0.1411	203.2
	*All three sam tubes from bag		•	n								

NOTE: Samples 100 & 101 removed from analysis as outliers

Overall Arithmetic Mean =	180	ft/day
Overall Geometric Mean =	130	ft/day
In Situ Arithmetic Mean =	190	ft/day
In Situ Geometric Mean =	125	ft/day
Recompacted Arithmetic Mean =	158	ft/day
Recompacted Geometric Mean =	143	ft/day

Table 1 – Falling Head Permeability Calculations

Test Hole	Split	Depth	Permeabilit	y Range	
100	1	42-48"	Dense	2	ft/day
100	1	42-40	Loose	7	ft/day
100	0	40.40"	Dense	3	ft/day
100	2	42-48"	Loose	10	ft/day
404	4		Dense	125	ft/day
101	1	30-36"	Loose	374	ft/day
101	2		Dense	184	ft/day
101	2	30-36"	Loose	552	ft/day
100	4	40.40"	Dense	329	ft/day
102	1	42-48"	Loose	986	ft/day
102	2	42-48"	Dense	199	ft/day
102	Z	42-40	Loose	596	ft/day
102	1	180-186"	Dense	119	ft/day
102	I	100-100	Loose	356	ft/day
102	2	180-186"	Dense	123	ft/day
102	2	100-100	Loose	368	ft/day
103	1	42-48"	Dense	227	ft/day
105		42-40	Loose	831	ft/day
103	2	42-48"	Dense	218	ft/day
100	2	72 70	Loose	655	ft/day
103	1	165-171"	Dense	242	ft/day
100	I	100 171	Loose	726	ft/day
103	2	165-171"	Dense	214	ft/day
100	2	100 111	Loose	642	ft/day
104	1	42-48"	Dense	510	ft/day
101		12 10	Loose	1531	ft/day
104	2	42-48"	Dense	371	ft/day
101	-	12 10	Loose	1114	ft/day
105	1	42-48"	Dense	130	ft/day
	-		Loose	389	ft/day
105	2	42-48"	Dense	145	ft/day
			Loose	436	ft/day
106	1	55-60"	Dense	374	ft/day
			Loose	1123	ft/day
106	2	55-60"	Dense	258	ft/day
			Loose	775	ft/day
108	1	46-50"	Dense	162	ft/day
			Loose	485	ft/day
108	2	46-50"	Dense	155	ft/day
			Loose	465	ft/day ft/day
109	1	46-52"	Dense Loose	260 779	ft/day
			Dense	196	ft/day
109	2	46-52"	Loose	588	ft/day
		.			-
		Overall Arithmet		417	ft/day
		Overall Geomet	ric Mean	244	ft/day
		Dense Arithmeti	c Mean	207	ft/day
		Dense Geometr	ic Mean	139	ft/day
		Loose Arithmetic	c Mean	627	ft/day
		Loose Geometri		427	ft/day

The grain size sieve analysis results can be found in **Appendix B**.

Table 2 – Washed Sieve Analysis Summary

For the purposes of effluent renovation calculations, core tube values will be utilized because they represent more closely in-situ soil conditions. In reviewing the various

average values of core tube permeabilities and grain size permeability estimates, there is a close correlation between the core tube values and the dense grain size analysis (dense soil values most closely represent in-situ soil conditions). This provides a crosscheck to insure that the values utilized in the analysis are reasonable.

Ground Water Monitoring and Ground Water Contours

The groundwater observation wells #100-115 were installed on two dates in December, 2022 and January, 2023 and monitored on five dates. Wells # 100-109 and the existing dug well on the property were monitored on December 20th and 27th, 2022 and January 3, 2023. Because some of those wells did not penetrate the groundwater table, wells #110-115 were installed on January 3rd, then all wells were monitored on January 5th and 12th, 2023. Additional monitoring wells #200-209 were installed by Dieter and Gardner in March 2024 and monitored on several dates into May 2024.

Groundwater contours mapped as a result of the groundwater elevations measured in the monitoring wells on those dates indicate that the gradient across the entire site is toward the west-northwest. The updated 2024 groundwater contour maps confirm that groundwater flows primarily in a westerly direction, turning to the north as it approaches Billings Avery Brook.

Based on the 2023 groundwater mapping, it appeared that a groundwater boundary condition exists in the southeast portion of the site as evidenced by warped groundwater contours between wells 100-101 and down gradient wells to the west. Based on the observation of bedrock in test holes in the southerly and easterly portion of the site, we believed it likely that groundwater is perched on bedrock in those areas, resulting in the warping.

In response to questions raised during the 2022-2023 hearing, the applicant installed groundwater monitoring wells 200-209 around the perimeter of the site. Subsequent groundwater monitoring confirmed that groundwater gradients slope into the site from the perimeter, with the gradient reducing in deep sandy soils in the center and northern portion of the site. We note that the highest groundwater conditions observed in any 2023 -2024 monitoring occurred on April 19, 2024, so applicable calculations have been revised based on those observations.

Ground water contour maps and groundwater monitoring measurements can be found in <u>Appendix C</u> of this report, based on January 5th & 12th, 2023, April 8th, 19th, and May 2nd, 2024 monitoring.

Hydraulic Gradients

The hydraulic gradient of the water table across the site was determined using the ground water contour maps. The gradient on various monitoring dates varies from about 0.4% to 1.3% in down gradient (northwest) areas of the site. Because this report is concerned with potential impacts to Billings Avery Pond, the groundwater gradient

under lots closest to the pond was selected. It is the area of lots 13, 15, & 17 where the groundwater gradient varies from 0.4-1.3% depending on the date of the monitoring. Utilizing the highest gradients on site will yield the most conservative values for travel time. Travel time is determined because the Manual requires a minimum travel time of 21 days to a point of concern, the objective being to provide time for bacteria in SSDS effluent to die. The 21 day travel time is the standard DEEP model used to estimate bacterial die off, so we are presenting it here keeping in mind that the closest SSDS to Billings Avery Pond is more than 200' away (double the distance required by the Connecticut Public Health Code). In this report, we are considering Billings Avery Pond, and tributaries, as the point of concern. The Manual suggests that up to a 56 day travel time may be appropriate to a public water supply, however, the DEEP models were developed for DEEP permitting of large septic systems of over 5,000 GPD design flow (DEEP regulatory authority is now 7,500 GPD design flow and above). The Connecticut Public Health Code has regulatory authority over SSDS design in this development, and therefore the local Health District reviews and approves septic system design and installation. For small septic systems, such as are proposed by Avery Brook Homes, LLC, the Connecticut Public Health Code requires a 100' separating distance from a Public Water Supply Reservoir. For the following reasons we believe the 21 day travel time to be sufficient on this site:

- The Connecticut Public Health Code requires a 100' separating distance between a small SSDS and a Public Water Supply Reservoir. The 21 day travel time distance demonstrates a distance based on site specific conditions rather than a 100' cookbook distance. All proposed SSDS meet both the 100' separating distance and the 21 day travel time distance.
- The DEEP methodology presented in the *Manual* is intended for use on SSDS design for large discharges regulated by DEEP (currently defined as over 7,500 GPD). As such, a large SSDS would be in a central location where the discharge would be concentrated. This site has numerous small SSDS dispersed throughout the 18 proposed lots, so most SSDS far exceed any minimum standards for travel time to the reservoir.
- Note that three of the existing four building lots owned by Avery Brook Homes could potentially have an SSDS installed as close of closer to the Reservoir or its tributaries than are proposed in the current application.

Unsaturated Soil Thickness

The observed unsaturated soil thickness of the soil horizon was estimated by comparing the calculated ground water contours to the ground surface contours and test hole logs. With the exception of lots 1, 2, 7 & 9 the unsaturated soil thickness exceeds 10 feet somewhere on the lot. Most of the remaining lots on the site enjoy exceptionally deep, well drained soils with a water table as deep as 25' below grade in the central and westerly portion of the site. These deep unsaturated soils provide considerably more separation distance than recommended by the *Manual* between the bottom of leachfields and the mounded water table. (mounded water table calculated at 1.8', see mound calculation in Travel Time Analysis) The purpose of the separation, recommended at 3', is to insure the removal of viruses from the effluent prior to it

contacting groundwater. The deep soils provide adequate depth to groundwater from the bottom of the leachfields to meet or exceed the recommended separation.

The groundwater monitoring results can be found in <u>Appendix C</u> of this report. Test hole logs can be found in <u>Appendix D</u> of this Report.

Leaching Field Sizing and Type

The proposed septic tank/leaching systems (SSDS) for each lot were sized by Dieter and Gardner for three bedroom houses based on percolation rates as described in the *Connecticut Public Health Code, On-site Sewage Disposal Regulations and Technical Standards for Subsurface Sewage Disposal Systems.*

The leachfields proposed consist of Geomatrix GST 6236. The Geomatrix GST products consist of a crushed stone core with alternating fingers of crushed stone and ASTM C-33 sand extending horizontally for a total unit width of 5.17'.

This report is concerned with the renovation of wastewater within and after it leaves the leachfield. The leachfield type may affect the quality of effluent treatment in the biomat at the stone/soil interface, as well as in the select fill directly below the crushed stone leachfield. (See Massachusetts Alternative Septic System Test Center report on Geomatrix GST products in **Appendix E** and discussion page 21.)

Effluent Travel Time to Billings Avery Pond

The equation V=Ki/n can be utilized to determine the velocity of the effluent plume down gradient of the leachfield. The objective of this calculation is to determine the elapsed time between the discharge of effluent from the leachfield and its arrival at any specified point of concern (POC). For purposes of this analysis, the POC is the nearest down gradient point of the Reservoir or its tributaries. The minimum travel time recommended by the *Manual*, and normally required by DEEP, is 21 days. The 21 day minimum is intended to provide time to remove pathogenic bacteria in the effluent to acceptable levels. It should again be noted that on a site with sandy soils such as this development, the 21 day travel time distance far exceeds the requirements of the Connecticut Public Health Code Technical Standards for a septic system serving a single family dwelling to the Reservoir: i.e. 100' between any component of the septic system and the Reservoir.

V = effluent plume movement in groundwater, ft/day
K = Soil permeability as determined by sample analysis, ft/day
i = hydraulic gradient, ft/ft
n= effective porosity, dimensionless

For the travel time analysis we have utilized the following values:

K = 180 ft/day. This value represents the arithmetic mean of permeability core tube values, minus very low outliers. Removing the outliers increases the permeability, providing a more conservative analysis.

i = .013 (1.3%) Maximum value in January, 2023 monitoring (Example Figure 1a & 1b)
i = .010 (1.0%) Average value in April, 2024 monitoring (Figure 1b)
n = .25 (value from *Manual*)

Based on the groundwater contours mapped for April 8, 2024, it appears that the gradient increases closer to the wetland areas. The average gradient from the leachfield on lot #16 to the nearest downgradient point at the edge of wetlands would be 2.7'/270' = 1%. For a comparison of travel times from SSDS on Lots 16, 17 and 18 to Billings Avery Reservoir and it's tributaries, on groundwater monitoring dates January 12, 2013 and April 8, 2024 mapping, we demonstrate travel times 1.3% and 1.0% hydraulic gradients respectively because they are conservative values representing conditions during differing groundwater levels.

Calculated horizontal plume velocity in the groundwater at i = 1.3% V=(180(.013)/.25) = 9.4 ft/day 21 day travel time distance = 197'

Calculated horizontal plume velocity in the groundwater at i = 1.0% V=(180(.010)/.25) = 7.2 ft/day 21 day travel time distance = 151'

Figure 1 - Travel Time flow paths superimposed on a portion of April 8, 2024 Groundwater Contour Map Lots 16, 17, & 18

3 Bedroom House 450 gai/day 60 ft*/day
--

ft ft

ft²

ft²

Hydraulic Conductivity (K)	130
Hydraulic Gradient (i)	1.3%
Leaching Bed Length	20
Leaching Bed Width	5.17

36	
103.4	

ft/day (Overall Geometric Mean of core tubes) (TH 114-112, 1/12/22) 1.8'/140'

Mound height = 36'/20' = 1.8'

Hydraulic Conductivity (K)	180	ft/day	(Overall Arithmetic Mean of core tubes)
Hydraulic Gradient (i)	1.3%		
Porosity (n)	0.25		(Effective Porosity of Sand per Manual)
Velocity (V)	9.36	ft/day	

Figure 1a – Example of Hydraulic Analysis and 21 Day Travel Time based on January 12, 2023

Travel times from proposed SSDS serving lots 16, 17 and 18 were calculated since they are the closest to Billings Avery Reservoir. Travel times vary based on fluctuating water table observations. The most complete groundwater contour coverage was obtained in spring 2024, at which time groundwater levels were higher, but gradients were lower than during the January 2023 observations. We have included estimates of travel times for both groundwater observation periods to provide a range of estimated travel times for comparison. (Max GW = April 8, 2024 mapping, Min GW = January 12, 2023 mapping) All estimated travel times from those SSDS proposed closest to Billings Avery Reservoir and tributaries exceed 21 days travel time. SSDS proposed at greater distance will have greater travel times to the same points.

Lot Number	Distance to Billings Avery Reservoir and/or tributaries				
16	270 ft	38	days	29	days
17	343 ft	48	days	36	days
18	352 ft	49	days	37	days

Figure 1b – Travel Times to Nearest Point of Billings Avery Reservoir or Tributary

In contrast to **Figure 1b**, note that observed hydraulic gradients across much of the site are reduced to 0.4%-.6% (see April 2024 groundwater contour maps) at certain times. At a gradient of 0.4%, the 21 day travel time distance is reduced as follows: Calculated horizontal plume velocity in the groundwater = V=(180(.004)/.25) = 2.9 ft/day 21 day travel time distance = 61'

Therefore, the 21 day travel time distance is met at a distance of 61' from the leachfield in those locations, with groundwater conditions as observed on those dates. It is our opinion that actual travel times are greater than those calculated in Figure 1b, but we present Figure 1b as being a conservative estimate.

Mound Calculations and Leachfield Elevation above Groundwater for Virus Removal

In the **Figure 1a** calculations, an estimate of mounded water table under a leachfield is provided. The estimated mound is calculated based on Darcy's Law (Q = KiA).

Q = discharge, cubic ft/day K = 130 ft/day i = .013 (1.3%) A = hydraulic window, L x H

In the example, the value of K has been reduced to 130 ft/day, corresponding to the Geometric mean of the permeability core tubes. The reduced value provides a conservative estimate of the hydraulics under the leachfield. The Manual recommends a minimum separating distance of 3' above mounded water table, primarily for virus removal. The mounded water table is estimated to be 1.8', which means that the bottom of the leachfields on all lots should be at least 4.8' above the observed water table in their respective location. (3' separation + 1.8' mound height) The depth from the bottom of the leachfields to mounded groundwater exceeds this recommendation, (see separating distances in Phosphorous removal spreadsheets) thereby maximizing virus removal prior to effluent contacting the water table.

Nitrogen Analysis

The objective of this analysis is to determine the concentration of Nitrogenous compounds in the groundwater as a result of the proposed SSDS construction. The

target concentration is 10 mg/l, which is the EPA drinking water standard for Total Nitrogen (TN).

The methodology recommended by DEEP in the *Manual*, has remained essentially the same since the original DEEP (then DEP) design manual was introduced in 1982. Certain updates to input variables have been made, but the basic concept is that the TN concentration is governed by the volume of effluent + infiltrating rainwater.

On most sites where a large central leachfield is proposed, the rainfall contributing area is limited to the area of the site directly up gradient and down gradient from the proposed leachfield. Gradient in this context refers to groundwater gradient, not necessarily surface topography. On the Avery Brook site, residential lots and their corresponding SSDS are spread relatively uniformly around the property. It is our opinion that the entire area of the subject site and 94 Stoddard Wharf Road can be considered as contributing to infiltrated rainfall for dilution. The applicant has proposed development restrictions on the adjacent lot at 94 Stoddard's Wharf Road, providing an easement such that infiltrating groundwater on that site can be considered as part of the dilution calculations for the development. Use of such an easement has been acceptable to DEEP in this situation, since the applicant thus controls the site upon which the easement is proposed. In sum total, the Nitrogen calculations will consider 19, 3-bedroom homes including one 3-bedroom, single family home on 94 Stoddard's Wharf Road.

As part of our review of the site we have recommended that gutter outlets be collected and infiltrated on each lot. A detail of the proposed infiltration structure is depicted on Sheet 7 of the Site Development Plan Set in <u>Appendix A</u>. The applicant has adopted this proposal and incorporated it into the design of the project.

The applicant's road design engineer has incorporated stormwater infiltration basins into the design of the subdivision. Refer to the project drainage report for details on that design. For the purpose of calculating infiltrating stormwater for Nitrogen dilution, we have chosen to use a 70% infiltration rate. This assumes that some stormwater is lost when a major event occurs, beyond the capacity of the infiltration basin.

Figures 2-5 below depict the steps in determining infiltrated rainfall and the resulting TN concentration.

Figure 2 – Site Coverage Map

Figure 2 breaks out the various ground cover features. It is similar to a drainage area map commonly used for runoff calculations as a result of development, as it will be used to calculate a TR-55 composite curve number (CN). We have elected to calculate all vegetated areas at the same CN because doing so is conservative, assigning the wooded areas the same higher CN that lawns are assigned. Note that only rainwater infiltrating (+ effluent) on the subject site is considered for TN dilution.

Avery Brook Homes	Total (ft ²)	Total (Acres)	% of Total Area	Hydraulic Soil Group	Cover Type	Curve Number	Product CN x Area
Roads	16,805	0.39	4.19%	А	Impervious (Paved)	98	37.8
Roofs	16,416	0.38	4.09%	А	Roofs	95	35.8
Vegetated Areas	341,792	7.85	85.21%	А	Grass (Good)	39	306.0
Driveways	26,085	0.60	6.50%	А	Impervious (Gravel)	76	45.5
	401,098	9.21	1.00				425
					CN (Weighted) =	425 9	46

Figure 3 – Average Runoff Coefficient Calculation

Figure 3 calculates the composite CN, note that roof areas and roads have been assigned a CN of 95 even though they will ultimately be infiltrated at a rate of 90% and 70% respectively. This is conservative in that it elevates the CN somewhat, which would typically reduce the infiltrated rainwater volume. The composite CN is calculated as 46.

Figure 4 – Infiltration Rate Determination

Figure 4 is copied from the *Manual;* the graph yields an infiltration rate of 48%. In the calculation of infiltrated rainwater for dilution in **Figure 5** below, the yards and drives are calculated at 48%, the roofs are calculated at 90% (See detail of gutter downspout collection and infiltration structure on plans) and the roads at 70% (see infiltration basin details on subdivision plans).

	Lot Size:	401,098	ft ²	 '	9.21	Acres				
House	Size: 3 beds, 24' x 36'		Number of E	Bedrooms:	57					
					-	·				
CALCUL	LATE NITROGEN LOAI	<u>D</u>								
	Discharge per bedroom/				gal/day		Approxi	mates 145	GPD/hom	e as shown in
	Design Flow = #	Bedrooms x	: DPB x 3.8 l	/g =	10397	L/day	Ledyard	use data	7/2023-4/20)24
	Raw Total Nitrogen from	ı house	!	90	mg/L		90 mg/l	is concen	tration subr	mitted to DEEP
	itrogen Concentration disc		ound		mg/L	[& 2024 app	
	Daily Nitrogon Conc		Daaian Elouu							
	Dally Nitrogen Conce		Jesign Flow A	x Nitrogen Concentrati						
	Nitrogen Load in	n Effluent =	561427.2	. mg/Day						
CALCUL	ATE DILUTION WATE		/F							
0/1200			<u> </u>						<u> </u>	
	Daily Effluent Volume	10396.8	L/day							
	Rain to the Site	0.01 ft/Day	v x Lot Area =	= 4010.98	ft ³ /day	=	114008	L/day		
	% Prec	cipitation Infi	iltrating	Area	 '					
	/*****		hanny	ft ²			+ +			
	Impervious Area	0.70		16,805						
	Roofs	0.9	1	16,416		19 house				
	Grass Area	0.48		341,792			s 94 SWI	R		
	Driveways	0.48		26,085	<u> </u>	19 lots		<u> </u>		
		ļ		401,098	['	<u> </u>			ļ	Į
	Infiltration Rate =	0.51			ļ'			L		
	Rain Infiltrating =	57,735	L/Day				1			
	Notes :	CN _{AVE} of Ir	npervious, C	Grass and Driveways =	- 46				-	
		=		ng = 48% taken from <i>M</i>		ia. N-1				
				runoff captured in infiltra						
				se of roof runoff infiltrat						
	ULUTION WATER									
	Rain Infiltrating + Effluent	t =	68131	L/Day						
NITROG	GEN CONCENTRATION =	561427.2	mg/Day	÷	68131	L/Day	=	8.24	mg/L	
AI	LLOWABLE DISCHARGE =	10	mg/L							
		DISCH	ARGE IS	ACCEPTABLE						1
									+	

Figure 5 – Nitrogen Concentration Analysis (48 gpd)

For estimating the TN load to the groundwater in **Figure 5** above, the following discharge and TN concentrations are utilized:

In 2023 this report had estimated water use from 3 bedroom homes at 135 gallons per day (GPD), or 45 GPD/bedroom. Water use data from Groton Public Utilities covering

the time period July 2023-April 2024, submitted to the 2024 Ledyard Planning and Zoning Commission Public Hearing record by the Applicant, indicates an average of 145 GPD/ home (or 48 GPD/bedroom assuming an average of 3 bedrooms per home).

					Average	daily v	vater use per a	gpd		
							65692522.00	\$768,909.17		
WOR018-1	18	WOODRIDGE CIRCLE	5/8 METER"	4/30/2024	RESID	APT	168.00	\$30.78		
WOR018-1	18	WOODRIDGE CIRCLE	5/8 METER"	3/31/2024	RESID	APT	159.00	\$30.78		
WOR018-1	18	WOODRIDGE CIRCLE	5/8 METER"	2/29/2024	RESID	APT	170.00	\$30.78		
WOR018-1	18	WOODRIDGE CIRCLE	5/8 METER"	1/31/2024	RESID	APT	175.00	\$30.78		
WOR018-1	18	WOODRIDGE CIRCLE	5/8 METER"	12/31/2023	RESID	APT	157.00	\$30.78		
WOR018-1	18	WOODRIDGE CIRCLE	5/8 METER"	11/30/2023	RESID	APT	156.00	\$30.78		
WOR018-1	18	WOODRIDGE CIRCLE	5/8 METER"	10/31/2023	RESID	APT	147.00	\$30.78		

Table 3 - Potion of Groton Public Utilities Metered Water Usage of all Residential Properties onPublic Water in Ledyard

This data covers all residential properties in the Town of Ledyard served by public water during that time period, with over 15,000 meter readings covering approximately 1,500 residences. We have revised the Nitrogen calculations to correspond with the metered water use.

Effluent TN concentration: 90 mg/l from house, 54 mg/l to leachfield. Recent applications to DEEP in 2023-2024 prepared by our office have utilized this concentration.

The 54 mg/l figure is a standard 60% of the raw sewage concentration, as used in the *Manual*. In the *Manual*, it is accepted that approximately 40% of the raw sewage TN is removed in the septic tank/leachfield system.

Based on the above, the calculated TN concentration exiting the site is below the EPA drinking water standard of 10 mg/l. There are no water bodies or inland wetlands mapped within the effluent plume on-site.

In **Figure 6** below, we present an analysis of TN based on the methodology used by DEEP prior to 2006. We have included it because at the 2023 Inland Wetland Commission hearing, commissioners questioned whether using 150 gpd/bedroom was the more conservative approach. The following spreadsheet uses a discharge of 150 gpd/bedroom, with a discharge concentration of 40 mg/l (as was standard practice for residential development prior to 2006). Note that the estimated site TN concentration is approximately the same using this method vs. the current method presented in **Figure 5**.

	Lot Size:	401,098	ft ²		9.21	Acres					
House	Size: 3 beds, 24' x 36'		Number of E	Bedrooms:	57						
CALCUL	ATE NITROGEN LOAI	<u>D</u>			1						
	Discharge per bedroom/	day (DBB) .		150	gal/day	1	Standor	d onolygia	prior to 20	06 Manual	
	Design Flow = #				32490		Stanuar	u analysis	prior to 20	Jo ivialiual	-
	Design Flow = $\#$		x DF D X 3.0 I	/y =	32490	L/uay					
	Raw Total Nitrogen from	house		40	mg/L						
Ni	trogen Concentration disc		ound	24	mg/L						
	Daily Nitrogen Concer	ntration = D	esign Flow x	Nitrogen Concentratio	n						
	Nitrogen Load in	Effluent =	779760	mg/Day							
				····· gr = •·· y							
CALCUL	ATE DILUTION WATE		IE								
	Daily Effluent Volume	32490	L/day								
	Rain to the Site	0.01 ft/Day	v x Lot Area =	4010.98	ft ³ /day	=	114008	L/day			
	% Proc	pitation In	filtrating	Area							
	70 FIEC	pilation in	nu aung	ft ²							
	Impervious Area	0.70		16,805	1						
	Roofs	0.9		16,416		19 hou	ses x 86	4 SF roof	each		
	Grass Area	0.48		341,792		includ	es conc	eptual la	wn for 94	SWR	
	Driveways	0.48		26,085		19 lots	S				
				401,098							
	Infiltration Rate =	0.51									
	Rain Infiltrating =	57,735	L/Day								
	Notes :	CN _{AVE} of I	mpervious, G	rass and Driveways =	46						
		% Precipit	ation Infiltratin	g = 48% taken from Λ	/anual Fi	ig. N-1					
				unoff captured by infilt							
		90% infiltra	ation due to us	se of roof runoff infiltra	tion strue	cture					
TOTAL D	ILUTION WATER										
	Rain Infiltrating + Effluent	=	90225	L/Day							
NITROG	EN CONCENTRATION =	779760	mg/Day	÷	90225	L/Day	=	8.64	mg/L		
Al	LOWABLE DISCHARGE =	10	mg/L								
		DISCL		ACCEPTABLE							
		DIGOR									
		-			-						

Figure 6 – Nitrogen Concentration Analysis (Pre-2006 model @ 150 gpd/bedroom)

Massachusetts Alternative Septic System Test Center report on Geomatrix GST

The MASSTC report conducted on Geomatrix GST units is included herein because Geomatrix GST units are proposed as leachfields serving dwellings on the site. It is our opinion that this is a sound engineering choice, in part because GST units are constructed using a specific sand mix as part of the leachfield cross section (ASTM C-33 sand). Installation quality control is managed by the use of forms, rented from the manufacturer for each installation. The advantage to the GST cross section is that the crushed stone-soil interface, where the biological mat forms, is uniform as compared to other crushed stone leachfields where the crushed stone is in direct contact with potentially variable site soils. The biological mat, which is the primary area of the septic system where effluent treatment occurs, responds to differences in soil grain size at the crushed stone-soil interface. The mat will tend to be more or less vigorous as natural soil variations occur across the leachfield, possibly resulting in areas of saturated flow. In contrast, the C-33 sand provides a relatively uniform surface for the mat, resulting in a more evenly distributed discharge through the mat. This maximizes unsaturated percolation of the effluent through the sand, which in turn provides the time and environment for effective nitrification of the effluent, as well as virus removal.

The reason nitrification is important is that in the nitrogen cycle, the preferred nitrogen compound in ground or surface water is nitrate (NO₃). The very basic progression of nitrification in wastewater treatment is as follows:

 $Organic \ N + NH_3/NH_4 \ \rightarrow \ NO_2 \ \rightarrow NO_3$

In general, the primary constituent in the household waste stream is Organic N plus NH₃/NH₄ (ammonia/ammonium respectively), sometimes referred to as Total Kjeldahl Nitrogen (TKN). As treatment progresses through the septic tank/leachfield system, autotrophic bacteria convert (oxidize) the N compounds first to NO₂ and then NO₃ (nitrification). When a leachfield is first installed, it takes some time (3-6 months) for the biological mat to fully develop. During that time, treatment efficiency in the system increases, the results of which can be determined through effluent sampling under the leachfield.

In the MASSTC report (found in <u>Appendix E</u>), one can visualize the increase in treatment, and accompanying nitrification, by reviewing the raw sample data in the TKN, TN, NO₂ & NO₃ columns. Refer to the data appendices in the MASSTC report for definitions.

As mentioned above the objective in nitrification is to get the value of NO₃ to be as close to 100% of the TN value as possible. Reviewing the sampling data columns starting from day 1, 1-31-2019, through 8-14-2019, there is a progressive increase in nitrification efficiency. By the 8-14-2019 date, the nitrification rate is as high as 94%. This rate may be expected to vary over time as seen in the continuing test data, but demonstrates the potential performance of the GST in nitrification. Additional nitrification can still be expected below the leachfield, for N compounds not yet converted to NO₃.

Phosphorous Analysis

The objective of this analysis is to calculate the capacity of soils under the proposed leachfield to remove Phosphorous (P) from the wastewater. The DEEP *Manual* outlines a procedure which estimates the capability of unsaturated soil under the leachfield to remove P.

Phosphorous (P), normally in the form of a phosphate (PO₄) is removed by chemically binding with other elements in the soil, primarily Iron, Aluminum and Calcium. The estimated ability of the soil to absorb the P varies by soil type, from typical published low values of 8 milligrams/100 grams soil to high values of 30 milligrams/100 grams soil. For this analysis we have chosen a sorption capacity of 6 milligrams/100 grams soil.

The model considers the unsaturated soil directly under a leachfield, defined as the "unfolded" plan area of the leachfield. Therefore, a 20 foot run of Geomatrix GST6236 would have a plan area of 224 square feet. Effluent percolating downward beneath the leachfield contacts unsaturated soil resulting in adsorption of the P to Fe, Al, and Ca in the soil. The model views the removal capacity on a 6 month regenerative basis, and only considers one half (50%) of the available unsaturated soil mass as being available.

We have prepared spreadsheets for each lot which estimate the P sorption capacity on that lot, which can be found in **Appendix F** of this report. The spreadsheets utilize a depth to seasonal high water table based on April 8, 2024 monitoring, a 36" deep leachfield, one foot of ground cover and a mounded water table of 1.8' to estimate unsaturated soil conditions beneath the respective leachfields.

The spreadsheets depict the Geomatrix GST 6236 leachfield length necessary to meet or exceed the estimated 6 month P sorption capacity on that lot. The subdivision plan depicts conceptual leachfields of 20 linear feet in length. We recommend that when final SSDS design is submitted to Ledge Light Health District, as required in their subdivision approval letter of May 22, 2024, that the designs provide the following minimum length GST6236 leachfield (or equivalent unfolded area based on leachfield type if an alternate leachfield is used):

Lot #	Recommended length GST 6236
	for Phosphorous removal (FT)
1	30
2	40
3	20
4	30
5	20
6	22
7	20
8	20
9	20
10	30
11	20
12	25
13	20
14	20
15	20
16	24
17	20
18	20

Table 4 – Recommended System Lengths

Conclusion

It is our opinion that the development of the proposed 18 single family, 3 bedroom homes, utilizing onsite septic systems, is reasonable and will not adversely impact groundwater or surface water on or adjacent to the site, based upon the pollutant renovation analysis conducted in this study. In particular, and for the reasons stated herein, it is our opinion that there is sufficient travel time between the SSDS proposed on the site and the nearest hydraulically down gradient point of Billing Avery Reservoir or its tributaries to remove bacteria based upon the guidance contained in the Manual, and there is sufficient dilution available based on the project design to reduce total nitrogen concentration from the site to a level which meets the standard for drinking water prior to encountering those same points. Vertical separation above the mounded groundwater exceeds the recommended separation in the Manual, and should therefore provide virus removal to the standards described therein. The Geomatrix GST leachfields proposed on the subdivision plan are effective at nitrifying TN in the effluent, converting a high percentage of the TN to NO₃ prior to effluent leaving the leachfield package. Sufficient unsaturated soil beneath the leachfields is provided to permit adsorption of Phosphorous in accordance with DEEP models.

ANGUS McDONALD GARY SHARPE & ASSOCIATES, INC. SINCE 1966

Appendicies

SINCE 1966

Appendix A

Site Development Plan Set

- GENERAL NOTES:
- 1. MAP REFERENCES: A) SUBDIVISION PLAN PREPARED FOR AMER JAVAD 98 STODDARDS WHARF ROAD - (CONN. RTE #214) LEDYARD, CONNECTICUT BOUNDARY SURVEY MAP DATÈ: 9/12/11 SCALÉ: 1"=40' SHEET 1 OF 4 ADVANCED SURVEYS, LLC.
- B) LOT DIVISION PLAN PROPERTY OF PANDE HOLDINGS, LLC 98 STODDARDS WHARF (CONNECTICUT ROUTE 214) LEDYARD, CONNECTICUT DATE: MAY 10. 2007 SCALE: 1"=40' SHEET NO. 1 OF 2. REVISIONS DATE 5/23/07
- STREET ADDRESS, LOCATION MAP & NOTE 12 ADDED. C) BOUNDARY LINE ADJUSTMENT PLAN PROPERTY OF AVERY BROOK HOMES LLC 94, 96, 98 AND 100 STODDARDS WHARF ROAD A.K.A. CONNECTICUT ROUTE 214 LEDYARD, CONNECTICUT SCALES AS SHOWN FEBRUARY 2024.
- 2. CALL BEFORE YOU DIG AT 1-800-922-4455 BEFORE ANY CONSTRUCTION ACTIVITY. 3. ELEVATIONS SHOWN HEREON ARE BASED ON NATIONAL GEODETIC VERTICAL DATUM. 4. THIS SUBDIVISION WILL BE SERVED BY ON SITE WELLS ON SITE SEWAGE SYSTEMS
- AND OVERHEAD UTILITIES. 5. HOUSES, WELLS, DRIVEWAYS, SEWAGE DISPOSAL SYSTEMS AND EROSION/SEDIMENT SEDIMENT CONTROL MEASURES ARE SHOWN CONCEPTUALLY ONLY.
- 6. ZONING SETBACKS: LOTS SUBMITTED AS A SET-ASIDE DEVELOPMENT AS DEFINED IN CONNECTICUT GENERAL STATUTES SECTION 8-30g. MINIMUM FRONT YARD SETBACK 12 MINIMUM SIDE YARD SETBACK 6'
- MINIMUM REAR YARD SETBACK 15' 7. PASSIVE SOLAR TECHNIQUES AS PRESCRIBED BY LAW HAVE BEEN CONSIDERED IN THE DESIGN OF THIS SUBDIVISION.
- 8. ACTUAL CONDITIONS THAT DEVELOP OR ARE MORE CLEARLY ASSESSED DURING CONSTRUCTION MAY DICTATE THAT FIELD ADJUSTMENTS, INCLUDING ADDITIONAL DRAINAGE AND SIGHTLINE MEASURES, MAY BE NECESSARY FOR ADEQUATE STORMWATER MANAGEMENT. ADDITIONAL DESIGN EFFORT FOR INSTALLATION OF SUCH MEASURES SHALL BE UNDERTAKEN IN ACCORDANCE WITH DIRECTION FROM THE TOWN.
- 9. THE TOWN WILL INSTALL THE REQUIRED ROAD SIGNAGE AND MARKINGS, THE COST OF WHICH WILL BE BACKCHARGED TO THE APPLICANT/OWNER.
- 10. THIS SITE IS LOCATED IN FLOOD ZONE C AS SHOWN ON FIRM FLOOD MAP 09011C0359G.

EMAIL: DIETER.GARDNER@YAHOO.COM

N224,000

igs Aven **R-80** R-60 LOCATION MAP ZONING DISTRICT: R-60 GRAPHIC SCALE (IN FEET) 1 inch = 1000 ft

SHEET 2 – 40 SCALE A–2 PLAN SHEET 3 – 40 SCALE CONCEPTUAL LAYOUT PLAN SHEET 4 – 40 SCALE PLAN/PROFILE AVERY COURT

SHEET 1 - 100 SCALE BOUNDARY MAP; PARCEL HISTORY MAP; LOCATION MAP AND GENERAL NOTES

SHEET INDEX

SHEET 5 – DEEP TEST PIT DATA

SHEET 6 - PERCOLATION TEST RESULTS AND SEPTIC SYSTEM DESIGN CRITERIA

SHEET 7 - EROSION AND SEDIMENT CONTROL NARRATIVE AND DETAILS AND CONSTRUCTION DETAILS

SHEET 8 – 40 SCALE SIGHTLINE DEMONSTRATION PLAN

N/F

PAMELA C. MAHER

PLAN SHOWING

AFFORDABLE HOUSING

DEVELOPMENT PER C.G.S §8-30g

RESUBDIVISION

PROPERTY OF

AVERY BROOK HOMES LLC

96, 98 & 100 STODDARDS WHARF ROAD

A.K.A.

CONNECTICUT ROUTE 214

PARCEL ID: 65-2360-96/98/100

LEDYARD, CONNECTICUT

SCALES AS SHOWN

MARCH 2024

REVISED: MAY 13, 2024 SHEETS 3 & 6 TO ADDRESS LLHD COMMENTS

SHEET 1 OF 8

THIS SURVEY AND MAP HAS BEEN PREPARED IN ACCORDANCE WITH SECTIONS 20-300b-1 THRU 20-300b-20 OF THE REGULATIONS OF CONNECTICUT STATE AGENCIES - "MINIMUM STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS ENDORSED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS, INC. IT IS A BOUNDARY SURVEY BASED ON AN RESURVEY CONFORMING TO HORIZONTAL ACCURACY CLASS "D". TO MY KNOWLEDGE AND BELIEF, THIS MAP IS SUBSTANTIALLY CORRECT AS NOTED HEREON.

TITLE: LAND SURVEYOR CT No. 14208

DATE: MARCH 25, 2024

ALL IMPROVEMENTS SHALL BE COMPLETED BY	DATE
CHAIRMAN OR SECRETARY	

EROSION AND SEDIMENT CONTROL PLAN CERTIFIED BY THE AFFIRMATIVE VOTE OF THE LEDYARD PLANNING AND ZONING COMMISSION ON DATE

DATE

LOT NUMBERS ASSIGNED BY THE ASSESSOR

ASSESSOR

STREET ADDRESS	TOTAL AREA
1	12,481 Sq. Ft. 0.29 ACRES
2	24,444 Sq. Ft. 0.58 ACRES
3	10,439 Sq. Ft. 0.24 ACRES
4	13,910 Sq. Ft. 0.32 ACRES
5	11,762 Sq. Ft. 0.27 ACRES
6	14,542 Sq. Ft. 0.33 ACRES
7	10,561 Sq. Ft. 0.24 ACRES
8	14,287 Sq. Ft. 0.33 ACRES
9	10,201 Sq. Ft. 0.23 ACRES
10	12,819 Sq. Ft. 0.29 ACRES
11	11,508 Sq. Ft. 0.26 ACRES
12	15,917 Sq. Ft. 0.37 ACRES
13	12,308 Sq. Ft. 0.28 ACRES
14	9,756 Sq. Ft. 0.22 ACRES
15	12,575 Sq. Ft. 0.29 ACRES
16	20,973 Sq. Ft. 0.48 ACRES
17	11,456 Sq. Ft. 0.26 ACRES
18	14,752 Sq. Ft. 0.34 ACRES

LE	GEND
0000000000	STONE WALL
	PROPERTY LINE
	STREET LINE
O DH FND	DRILL HOLE FOUND
O IP FND	IRON PIPE FOUND
0	DRILL HOLE OR REBAR TO BE SET
	MONUMNET OR DRILL HOLE TO BE SET
$\langle 7 \rangle$	CURVE TABLE NUMBER
J J	UTILITY POLE
	ACCESS/UTILITY EASEMENT

THE STONE WALLS AND/OR FENCES SHOWN AS BOUNDARIES MAY HAVE IRREGULARITIES OF COURSE BETWEEN PRINCIPAL POINTS OF COURSE INDICATED. THE WORD "CERTIFY" IS UNDERSTOOD TO BE AN EXPRESSION OF

(8)

THE PROFESSIONAL OPINION BY THE LAND SURVEYOR WHICH IS BASED ON HIS OR HER BEST KNOWLEDGE, INFORMATION AND BELIEF. AS SUCH IT CONSTITUTES NEITHER GUARANTEE OR WARRANTY. NOTE: BOUNDARY LINES OF ADJOINING PROPERTIES ARE SHOWN FOR GENERAL INFORMATIONAL PURPOSES ONLY AND ARE NOT TO BE CONSTRUED AS BEING ACCURATELY LOCATED OR DEPICTED.

THIS DRAWING IS THE PROPERTY OF THE LAND SURVEYOR. THIS PLAN AND REPRODUCTIONS, ADDITIONS OR REVISIONS OF THIS PLAN ARE NOT VALID WITHOUT THE EMBOSSED SEAL AND SIGNATURE OF THE LAND SURVEYOR WHO PREPARED THIS PLAN. JOB# 22-00718LOT.DWG FBK#327

STREET ADDRESS

N/F AVERY BROOK HOMES LLC

	0–13° TOPSOIL 13–25" BROWN FINE TO MED. SANDY LOAM 25–91" TAN TO BROWN MED. TO COARSE SAND AND GRAVEL, SOME COBBLES NO MOTTLING NO WATER NO LEDGE	0-5" TOPSOI 5-41" LIGHT 41-83" TAN GRAVI 83"-104" OLI NO MOTTLING
	TP 14 O-8" TOPSOIL 8-26" BROWN FINE TO MED. SANDY LOAM 26-91" TAN MED. TO FINE SAND/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE TP 17 O-11" TOPSOIL 11-37" BROWN FINE TO MED. SANDY LOAM 37-89" TAN TO GRAY MED. TO FINE SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	NO WATER NO LEDGE TP 40 0-8" TOPSOII 8-32" BROW 32-58" TAN PATC 58-99" TAN NO MOTTLING NO WATER NO LEDGE TP 41 0-9" TOPSOII 9-29" BROW 29-52" TAN STAIN 52-101" TAN NO MOTTLING NO WATER NO LEDGE
	TP 18 0–9" TOPSOIL 9–29" YELLOW TO BROWN FINE SANDY LOAM 29–103" TAN TO OLIVE MED. TO COARSE SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	TP 42 0-5" TOPSOII 5-14" LIGHT 14-50" ORAN 50-105" TAN NO MOTTLING NO WATER
	TP 29 0–12" TOPSOIL 12–32" BROWN FINE TO MED. SANDY LOAM 32–99" TAN TO GRAY MED. TO FINE SAND W/ GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	NO LEDGE TP 43 0-8" TOPSOII 8-33" BROW 33-45" TAN AROU 45-83" TAN AND
	TP 30 0–12" TOPSOIL 12–34" BROWN FINE SANDY LOAM (DEPTH VARIES) 34–98" TAN TO MED. TO FINE SAND W/GRAVEL AND GRAVEL, STRATIFIED NO MOTTLING NO WATER NO LEDGE	NO MOTTLING NO WATER NO LEDGE TP 44 0-6" TOPSOIL 6-14" BROWN 14-42" TAN 42-102" TAN
	TP 31 O-7" TOPSOIL 7-31" YELLOW TO BROWN FINE TO VERY FINE SANDY LOAM 31-100" TAN FINE TO MED. SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	NO MOTTLING NO WATER NO LEDGE 0-13" TOPSO 13"-23 BROW 23-37" GRAY 37-93" BROW
	TP 32 O-8" TOPSOIL 8-34" BROWN FINE SANDY LOAM 34-82" TAN TO GRAY MED. TO FINE SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	MOTTLING @ 3 NO WATER NO LEDGE TP 46 0-15" TOPSO 15-39" GRAY 39-51" GRAY MOTT 51-108" BRO
	TP 33 O-10" TOPSOIL 10-34" BROWN FINE SANDY LOAM 34-75" TAN TO GRAY MED. TO FINE SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	GRAN OLD FILTER F4 MOTTLING @ 3 WATER @ 96" NO LEDGE TP 47 0-10" TOPSO 10-22" BROW 22-41" LIGHT TRACE
	TP 34 0–12" TOPSOIL 12–44" YELLOW TO BROWN FINE TO VERY FINE SANDY LOAM 44–89" TAN TO BROWN MED. SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	41-98" BROW AND 3 NO MOTTLING WATER @ 96" NO LEDGE TP 48 0-10" TOPSO 10-28" BROW 28-106" BRO
APPROVED BY THE LEDYARD PLANNING AND ZONING COMMISSION AS TO THE COMPLIANCE WITH THE REGULATIONS GOVERNING THE SUBDIVISION OF LAND.	TP 35 0-9" TOPSOIL 9-21" BROWN FINE SANDY LOAM 21-47" TAN TO BROWN MED. SAND W/GRAVEL, FEW COBBLES 47-110" TAN TO BROWN, MED. SAND W/GRAVEL, NO MOTTLING NO MOTTLING NO WATER NO LEDGE	W/GR NO MOTTLING NO WATER-WI NO LEDGE TP 49 0-10" TOPSO 10-24" BROW 24-52" LIGHT
ALL IMPROVEMENTS SHALL BE COMPLETED BY DATE DATE DATE DATE DATE DATE DATE DATE DATE	TP 36 0-8" TOPSOIL 8-34" BROWN FINE SANDY LOAM 34-94" TAN TO GRAY MED. TO FINE SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	FINE 52-99" BROW GRAVI POSSIBLE MOT WATER @ 90" NO LEDGE TP 50 0-10" TOPSO 10-24" BROW 24-41" LIGHT
LOT NUMBERS ASSIGNED BY THE ASSESSOR	TP 37 0-9" TOPSOIL 9-39" LIGHT BROWN TO TAN, FINE TO VERY FINE, SANDY LOAM	41-111" TAN 41-111" TAN AND NO MOTTLING WATER @ 106 NO LEDGE
ASSESSOR DATE	39-100" LIGHT TAN FINE TO MED. SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE	TP 51 0-10" TOPSO 10-20" LIGHT SAND 20-42" LIGHT SANE 42-101" BROV
DIETER & GARDNER LAND SURVEYORS • PLANNERS 1641 CONNECTICUT ROUTE 12	TP 38 0-8" TOPSOIL 8-34" BROWN FINE SANDY LOAM 34-90" TAN TO GRAY MED. TO FINE SAND W/GRAVEL AND COBBLES NO MOTTLING	NO MOTTLING NO WATER NO LEDGE TP 52 0-13" TOPSO 13-38" BROW 38-90" BROW
P.O. BOX 335 GALES FERRY, CT. 06335 (860) 464-7455 EMAIL: DIETER.GARDNER@YAHOO.COM Control of the control of th	NO WATER NO LEDGE	WITH NO MOTTLING NO WATER NO LEDGE
THIS PLAN ARE NOT VALID WITHOUT THE EMBOSSED SEAL AND SIGNATURE OF THE LAND SURVEYOR WHO PREPARED THIS PLAN. JOB#22-00718LOT.DWG FBK#327		

TP 13

DEEP TEST PIT DATA

WITNESSED AND RECORDED BY WENDY BROWN-ARNOLD RS,/REHS AND ALEX WILBOUR LEDGE LIGHT HEALTH DISTRICT ON 5/2/22, 5/5/22 AND 5/23/2022 AND WENDY BROWN-ARNOLD RS,/REHS ON JUNE 14, 2022.

TP 39 0-5" TOPSOIL 41" LIGHT BROWN FINE SANDY LOAM -83" TAN TO MED. SAND W/ GRAVEL AND COBBLES "-104" OLIVE TO BROWN FINE SAND, SOME GRAVEL

) MOTTLING) WATER LEDGE

B" TOPSOIL 32" BROWN FINE TO MED. SANDY LOAM -58" TAN TO GRAY SILT WITH PATCHY ORANGE REDOX INCONSISTENT AROUND 8–99" TAN TO GRAY MED, TO FINE SAND D MOTTLING W/GRAVEL AND COBBLES D WATER

9" TOPSOIL 29" BROWN FINE TO MED. SANDY LOAM -52" TAN TO GRAY SILT FINE SAND, -101" TAN TO GRAY, FINE TO MED. SAND MOTTLING W/GRAVEL AND COBBLES

-5⁷² TOPSOIL -14" LIGHT BROWN FINE TO VERY FINE SANDY LOAM -50" ORANGE TO GRAY SILT, STAINED -105" TAN TO BROWN FINE TO MED. MOTTLING

B" TOPSOIL 33" BROWN FINE SANDY LOAM -45" TAN TO GRAY SILT INCONSISTENT AROUND HOLE -83" TAN TO MED. TO FINE SAND W/GRAVEL AND COBBLES MOTTLING WATER

6" TOPSOIL 14" BROWN FINE TO MED. SANDY LOAM -42" TAN TO GRAY SILT INCONSISTENT AROUND HOLE -102" TAN TO GRAY MED. TO FINE MOTTLING

3" TOPSOIL -23 BROWN FINE TO VERY FINE SANDY LOAM -37" GRAY TO TAN VERY FINE SAND W/SILT GRAVEL AND SOME COBBLES -93" BROWN TO GRAY COARSE SAND Ŵ/

15" TOPSOIL -39" GRAY TO TAN VERY FINE SANDY W/SILT -51" GRAY FINE TO MED. SAND W/SILT & HEAVILY MOTTLED THROUGHOUT -108" BROWN TO TAN COARSE SAND W/ GRAVEL AND SOME COBBLES D FILTER FABRIC AND GRAVEL @ 20" DTTLING @ 39" ATER @ 96"

O" TOPSOIL 22" BROWN FINE TO MED. SANDY LOAM W/SILT 2-41" LIGHT BROWN TO ORANGE SILTY LOAM, TRACE FINE SAND -98" BROWN TO GRAY COARSE SAND W/GRAVEL AND SOME COBBLES D MOTTLING Ater @ 96"

O" TOPSOIL 28" BROWN FINE TO VERY FINE SANDY LOAM TO SILT -106" BROWN TO GRAY MED. TO COARSE SAND W/GRAVEL AND COBBLES

MOTTLING WATER-WET AT BOTTOM

O" TOPSOIL 24" BROWN FINE TO VERY FINE SANDY LOAM -52" LIGHT YELLOW TO BROWN VERY FINE SAND W/SILT -99" BROWN TO GRAY COARSE SAND WITH GRAVEL, FEW COBBLES SSIBLE MOTTLING @ 52" TER @ 90"

O" TOPSOIL 24" BROWN FINE TO VERY FINE SANDY LOAM -41" LIGHT YELLOW TO TAN VERY FINE SAND, W/SILT –111" TÁN TO BROWN COARSE SAND W/GRAVEL AND SOME COBBLES) MOTTLING ATER @ 106"

10" TOPSOIL -20" LIGHT BROWN FINE TO VERY FINE SANDY LOAM -42" LIGHT YELLOW TO BROWN VERY FINE SAND W/TRACE SILT -101" BROWN TO TAN COARSE SAND WITH GRAVEL, SOME COBBLES MOTTLING

3" TOPSOIL 38" BROWN FINE TO VERY FINE SANDY LOAM -90" BROWN TO TAN COARSE TO MED. SAND WITH SOME GRAVEL AND COBBLES

0-13" TOPSOIL 13-32" BROWN FINE TO MED. SANDY LOAM W/GRAVEL AND COBBLES 32-92" BROWN TO TAN COARSE TO MED. SAND W/GRAVEL AND MANY COBBLES

NO MOTTLING NO WATER NO LEDGE

NO LEDGE

NO LEDGE

TP 54 0-11" TOPSOIL 11-32" BROWN FINE TO VERY FINE SANDY LOAM 32–95" BROWN TO TAN COARSE TO MED. SAND W/GRAVEL AND SOME COBBLES NO MOTTLING NO WATER

0–14" TOPSOIL 14–22" BROWN FINE TO VERY FINE SANDY LOAM 22-37" LIGHT BROWN FINE TO VERY FINE SAND W/SILT 37-110" TAN MED. SAND W/GRAVEL, FEW COBBLES NO MOTTLING NO WATER NO LEDGE

TP 56 0-15" TOPSOIL 15-43" LIGHT BROWN SILT LOAM ,SOME FINE SAND 43-110" TAN MED. SAND SOME GRAVEL FEW COBBLES NO MOTTLING NO WATER

TP 57 0-8" TOPSOIL

8–27" LIGHT BROWN FINE TO VERY FINE SANDY LOAM 27–104" TAN TO BROWN MED. TO COARSE SAND W/GRAVEL, SOME COBBLES NO MOTTLING NO WATER NO LEDGE

TP 58 0–12" TOPSOIL 12"–32" LIGHT BROWN FINE TO VERY FINE SANDY LOAM 32–98" TAN TO BROWN MED. TO COARSE SAND WITH GRAVEL, SOME COBBLES NO MOTTLING NO WATER NO LEDGE

TP 59 0—11" TOPSOIL 11-23" BROWN FINE TO VERY FINE SANDY LOAM 23-93" BROWN TO TAN COARSE TO MED. SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

TP 60 0-10" TOPSOIL 10-23" BROWN FINE TO VERY FINE SANDY LOAM 23-97" BROWN TO TAN COARSE TO MED. SAND WITH GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

0-8" TOPSOIL 8–28" BROWN VERY FINE SANDY LOAM 28–99" TAN TO BROWN COARSE SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

0-9" TOPSOIL 9-24" LIGHT BROWN VERY FINE SANDY LOAM 24-96" BROWN TO TAN COARSE TO MED. SAND W/GRAVEL AND COBBLES NO MOTTLING

NO WATER NO LEDGE TP 63 0-8" TOPSOIL

8-26" BROWN FINE TO MED. SANDY LOAM 26-91" BROWN TO TAN COARSE TO MED. SAND, W/GRAVEL AND COBBLES NO MOTTLING NO WATER

NO LEDGE

NO WATER

NO LEDGE

TP 64 0-10" TOPSOIL 10-31" BROWN FINE SANDY LOAM 31-91" BROWN TO TAN COARSE TO MED. SAND W/SOME SILT GRAVEL AND COBBLES NO MOTTLING

TP 65 0-13" TOPSOIL 13-30" LIGHT BROWN FINE TO VERY FINE SANDY LOAM 30-100" TAN TO BROWN COARSE SAND WITH GRAVEL AND COBBLES

NO MOTTLING NO WATER NO LEDGE TP 66

0-10" TOPSOIL 10-28" BROWN FINE SANDY LOAM 28-90" TAN TO GRAY MED. TO COARSE SAND W/SOME GRAVEL

NO MOTTLING NO WATER NO LEDGE

0-14" TOPSOIL 14–25" LIGHT BROWN FINE TO VERY FINE SANDY LOAM 25–108" TAN TO BROWN MED. TO COARSE SAND W/GRAVEL AND COBBLES

NO MOTTLING NO WATER NO LEDGE

TP 68 0—11" TOPSOIL 11-29" BROWN FINE TO MED. SANDY LOAM 29-80" TAN TO GRAY MED. TO COARSE SAND W/GRAVEL AND COBBLES

NO MOTTLING NO WATER NO LEDGE

TP 69 0-12" TOPSOIL 12-36" YELLOW TAN FINE TO VERY FINE SANDY LOAM 36–93" TAN TO BROWN MED. TO FINE SAND W/GRAVEL, SOME COBBLES

NO MOTTLING NO WATER NO LEDGE

0-14" TOPSOIL 14–36" BROWN FINE TO MED. SANDY LOAM 36–91" TAN MED. TO FINE SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

TP 71 O–8" TOPSOIL 8–36" BROWN FINE TO MED. SANDY LOAM 36–96" TAN TO GRAY MED. TO FINE SAND W/ GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

0-8" TOPSOIL 8-32" BROWN FINE TO MED. SANDY LOAM 32-91" TAN TO GRAY MED. TO FINE SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

n-13" TOPSOIL 13-28" BROWN FINE SANDY LOAM 28-37" YELLOW TAN FINE TO VERY FINE SANDY LOAM 37-90" TAN TO BROWN FINE TO MED. SAND W/GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

0-6" TOPSOIL 6-39" BROWN FINE SANDY LOAM 39-99" TAN TO BROWN FINE TO MED. SAND W/GRAVEL AND COBBLES

NO MOTTLING NO WATER NO LEDGE

0-10" TOPSOIL 10-29" LIGHT BROWN FINE SANDY LOAM 29-96" TAN TO OLIVE/BROWN FINE TO MED. SAND W/GRAVEL AND COBBLES

NO MOTTLING NO WATER NO LEDGE

TP 76 0-10" TOPSOIL 10-34" LIGHT BROWN FINE SANDY LOAM 34-96" TAN TO OLIVE/BROWN FINE TO MED. SAND W/GRAVEL AND COBBLES STRATIFIED

NO MOTTLING NO WATER NO LEDGE

NO LEDGE

TP 77 0-11" TOPSOIL 11-36" BROWN FINE TO MED. SANDY LOAM 36-101" BROWN TO TAN MED. TO FINE SAND WITH GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

TP 78 0-15" TOPSOIL 15-46" BROWN FINE TO MED. SANDY LOAM 46-106" BROWN TO TAN MED. FINE SAND W/ SOME GRAVEL NO MOTTLING NO WATER

TP 79 0-11" TOPSOIL 11-38" BROWN FINE TO MED. SANDY LOAM 38–90" TAN TO GRAY MED. TO FINE SAND WITH GRAVEL AND COBBLES NO MOTTLING NO WATER NO LEDGE

NO MOTTLING NO WATER NO LEDGE

TP 81 0-13" TOPSOIL NO MOTTLING NO WATER

NO LEDGE TP 82 0–9" SAND AND GRAVEL FILL

NO MOTTLING NO WATER NO LEDGE

TP 80 0–12" TOPSOIL 12–33" BROWN FINE TO MED. SANDY LOAM 33–95" TAN TO GRAY MED. TO FINE SAND W/GRAVEL AND COBBLES

13-40" BROWN FINE TO MED. SANDY LOAM 40-96" TAN TO GRAY MED. SAND W/GRAVEL AND COBBLES

0-9 SAND AND GRAVEL THE 9-18" TOPSOIL 18-52" LIGHT BROWN FINE TO VERY FINE SANDY LOAM, SOME SILT 52-101" TAN TO BROWN FINE TO MED. SAND, SOME GRAVEL

ON APRIL 10, 2024. TP 300 0-12" TOPSOIL

12-29" LIGHT BROWN FINE SANDY LOAM 29-119" BROWN MED-COARSE SAND WITH GRAVEL & COBBLES NO MOTTLING NO WATER

NO LEDGE RESTRICTIVE: 119"

TP 301 0—10" TOPSOIL 10-27" LIGHT BROWN FINE SANDY LOAM 27-103" BROWN MED-COARSE SAND WITH GRAVEL & COBBLES 103-120" TAN MED. SAND NO MOTTLING NO WATER NO LEDGE RESTRICTIVE: 120"

TP 302 0-11" TOPSOIL 11-32" LIGHT BROWN VERY FINE SANDY LOAM 32-120" BROWN MED-COARSE SAND WITH GRAVEL & COBBLES, STRATIFIED NO MOTTLING NO WATER NO LEDGE RESTRICTIVE: 120"

TP 303 0-9" TOPSOIL 9-33" LIGHT BROWN FINE SANDY LOAM 33–108" BROWN MED-COARSE SAND WITH GRAVEL & COBBLES

NO MOTTLING NO WATER NO LEDGE RESTRICTIVE: 108"

TP 304 0–12" TOPSOIL 12–32" LIGHT BROWN VERY FINE SANDY LOAM 32–117" BROWN MED. SAND WITH GRAVEL & SOME COBBLES

NO MOTTLING NO WATER NO LEDGE RESTRICTIVE: 117"

TP 305 0-9" TOPSOIL 9-32" LIGHT BROWN VERY FINE SANDY LOAM 32-121" BROWN MED-COARSE SAND WITH GRAVEL & SOME COBBLES

NO MOTTLING NO WATER NO LEDGE RESTRICTIVE: 121"

TP 306 0—13" TOPSOIL 13-35" LIGHT BROWN VERY FINE SANDY LOAM 35-115" BROWN MED-COARSE SAND WITH GRAVEL & COBBLES

NO MOTTLING NO WATER NO LEDGE RESTRICTIVE: 115"

TP 307 0-10" TOPSOIL 10-27" LIGHT BROWN FINE SANDY LOAM 27–121" BROWN COARSE SAND WITH GRAVEL & COBBLES

NO MOTTLING NO WATER NO LEDGE RESTRICTIVE: 121"

TP 308 0-11" TOPSOIL 11-28" ORANGE BROWN FINE SANDY LOAM 28-34" YELLOW BROWN FINE MED. SAND 34-128" GRAY-DARK BROWN MED. SAND WITH GRAVEL & COBBLES NO MOTTLING NO WATER NO LEDGE ROOTS TO 34"

RESTRICTIVE: 138"

TP 309 0-9" TOPSOIL 9-25" ORANGE BROWN FINE SANDY LOAM 25–48" TAN YELLOW-BROWN FINE MED. SAND 48-135" GRAY-DARK BROWN MED. SAND WITH GRAVEL & COBBLES

NO MOTTLING NO WATER NO LEDGE ROOTS TO 53" RESTRICTIVE: 135"

WITNESSED AND RECORDED BY WENDY BROWN-ARNOLD RS,/REHS LEDGE LIGHT HEALTH DISTRICT TP 310 0—10" TOPSOIL

10-34" ORANGE BROWN FINE SANDY LOAM 34–113" GRAY–DARK BROWN MED. SAND WITH GRAVEL & COBBLES

NO MOTTLING NO WATER NO LEDGE ROOTS TO 53" RESTRICTIVE: 135"

ADDITIONAL DEEP TEST PIT DATA

TP 311 0–10" TOPSOIL 10–33" ORANGE BROWN FINE SANDY LOAM 33–51" DARK BROWN–GRAY MED. SAND SOME COBBLES 51–135" GRAY–DARK BROWN MED. SAND WITH GRAVEL & COBBLES NO MOTTLING

NO WATER NO LEDGE ROOTS TO 32" RESTRICTIVE: 135"

TP 312 0-9" TOPSOIL 9-34" ORANGE BROWN FINE SANDY LOAM 34–138" DARK BROWN-GRAY MED. SAND WITH COBBLES NO MOTTLING NO WATER

NO LEDGE ROOTS TO 36" RESTRICTIVE: 138"

0-8" TOPSOIL 8–37" ORANGE BROWN FINE SANDY LOAM 37–72" GRAY-DARK BROWN MED. SAND, WITH GRAVEL & COBBLES WITH GRAVEL & COBBLES 72–80" GRAY–DARK BROWN MED. SAND 80–125" GRAY–DARK BROWN MED. SAND WITH GRAVEL & COBBLES NO MOTTLING

NO WATER NO LEDGE ROOTS TO 37" RESTRICTIVE: 125"

TP 314 0–12" TOPSOIL 12–31" ORANGE BROWN FINE SANDY LOAM 31-109" GRAY-DARK BROWN MED. SAND, WITH GRAVEL & COBBLES 109–125" GRAY-DARK BROWN MED. SAND WITH GRAVEL NO MOTTLING NO WATER NO LEDGE ROOTS TO:

RESTRICTIVE: 125" TP 315 0-8" TOPSOIL 8-36" ORANGE BROWN FINE SANDY LOAM 36–122" GRAY–DARK BROWN MED. SAND WITH GRAVEL & COBBLES

NO MOTTLING NO WATER NO LEDGE ROOTS TO 34"

RESTRICTIVE: 122"

NO LEDGE ROOTS TO 35"

TP 316 0—10" TOPSOIL 10-40" ORANGE BROWN FINE SANDY LOAM 40-52" YELLOW BROWN FINE-MED. SAND,

52–61" YELLOW–BROWN FINE SAND 61–120" GRAY–DARK BROWN MED.

SAND WITH GRAVEL & COBBLES NO MOTTLING NO WATER

RESTRICTIVE: 120" TP 317 0-11" TOPSOIL 11-29" ORANGE BROWN FINE SANDY LOAM 29-39" ORANGE BROWN FINE SANDY LOAM WITH COBBLES 39-116 GRAY-DARK BROWN MED. SAND

WITH GRAVEL & COBBLES

NO MOTTLING NO WATER NO LEDGE ROOTS TO 45" RESTRICTIVE: 116"

PLAN SHOWING AFFORDABLE HOUSING DEVELOPMENT PER C.G.S §8-30g DEEP TEST PIT DATA RESUBDIVISION PROPERTY OF AVERY BROOK HOMES LLC 96, 98 & 100 STODDARDS WHARF ROAD A.K.A.CONNECTICUT ROUTE 214 PARCEL ID: 65-2360-96/98/100 LEDYARD, CONNECTICUT

MARCH 2024 REVISED: APRIL 19, 2024

1 AVERY COURT AT PIT 41/42	1 AVERY COURT AT PIT 43/44		Y 26 & 27, JUNE 3 AND JUNE 10, 2022 E AVERY COURT AT PIT 51/52 <u>2 AVERY</u>	· · · · · ·	RRY AND MATT EMILYTA) COURT AT PIT 39/40	4 AVERY COURT AT PIT 59/60	
29" DEEP TIME READING 8: 43 5" 8: 48 10 3/4" 8: 53 15" 8: 58 17 1/2" 9: 03 19 1/2" 9: 08 21" 9: 13 22" 9: 18 23" 9: 23 23 3/4" 9: 28 24 1/2" 9: 33 25 1/2" PERC RATE: 1"/5 MINS.	26" DEEP TIME READING 8: 40 5 1/2" 8: 45 9 1/2" 8: 50 11 1/2" 8: 55 14" 9: 00 15 1/2" 9: 05 16 1/2" 9: 10 17 3/4" 9: 15 18 1/2" 9: 20 19 1/2" 9: 30 21 1/2" PERC RATE: 1"/5 MINS.	TIMEREADINGTIME1: 385"1: 11: 4311"1: 11: 43131/2"1: 5316"2:1: 5818"2:2: 0319"2:2: 08201/8"2: 13211/2"2: 23231/2"2: 28241/2"	9" DEEP 30" DEEP ME READING TIME 50 4 1/4" 1: 30 55 11 7/8" 1: 35 :00 15 1/2" 1: 40 :05 18" 1: 45 :10 21" 1: 50 :20 25" 2:00 :25 27" 2: 05 :30 28 7/8" 2: 10 :35 DRY 2: 15	P 30" DEEF READING TIME 2 1/2" 8: 41 9 1/2" 8: 46 13 1/2" 8: 51 15" 8: 56 17 1/2" 9: 01 20" 9: 06 21 1/2" 9: 11 22 1/2" 9: 16 23 1/2" 9: 21 24 1/2" 9: 26 9: 31 9ERC RA	READING 4" 8 1/4" 10 1/4" 12 1/2" 15" 17" 18" 19" 20" 21" 22"	29" DEEP TIME READING 10: 49 3" 10: 54 11" 10: 59 15" 11: 04 18 1/2" 11: 09 20 1/2" 11: 14 22" 11: 19 23 1/2" 11: 29 26 1/2" PERC RATE: 1"/3.3 MINS.	30" DEEP TIME READING 1: 27 2 1/2" 1: 32 8 1/4" 1: 37 13" 1: 42 15 1/2" 1: 47 18" 1: 52 19 1/2" 1: 57 21 1/2" 2: 02 23" 2: 07 24 1/2" 2: 12 26"
5 AVERY COURT AT PIT 37/38 28" DEEP TIME READING 10: 37 3" 10: 42 6 3/4" 10: 47 9 1/4" 10: 52 12 1/2" 10: 57 15" 11: 02 17" 11: 07 19" 11: 12 20" 11: 22 22 1/8" 11: 27 23 1/8" PERC RATE: 1"/5 MINS.	5 AVERY COURT AT PIT 81/82 27" DEEP TIME READING 8: 48 2" 8: 53 9" 8: 53 9" 8: 58 14" 9: 03 18" 9: 08 20" 9: 13 22" 9: 13 22" 9: 18 23" 9: 23 24" 9: 28 25" 9: 33 26" 9: 38 DRY PERC RATE: 1"/5 MINS.	30" DEEP 29 TIME READING TII 10:18 2 1/2" 11 10:23 12" 11 10:23 12" 11 10:33 19 1/2" 12 10:38 21" 12 10:43 22 1/2" 12 10:53 25" 12 10:58 25 3/4" 12 11:03 26 3/4" 12	29" DEEP 28" DEE IME READING TIME 1: 46 3" 10: 15 1: 51 6 1/2" 10: 20 1: 56 9" 10: 25 2: 01 12" 10: 30 2: 06 13 1/2" 10: 40 2: 11 14 1/2" 10: 45 2: 21 17 1/2" 10: 50 2: 26 18 1/2" 10: 50 2: 31 19 1/2" 2: 36 20 1/2"	EP 29" DEEF READING TIME 3" 11:46 11 1/2" 11:51 16 1/2" 12:01 24" 12:06 25 1/2" 12:11 27" 12:16 DRY 12:21 12:31 12:36	COURT AT PIT 67/68 READING 3" 6 1/2" 9" 12" 13 1/2" 14 1/2" 16" 17 1/2" 18 1/2" 19 1/2" 20 1/2" TE: 1"/5 MINS.	8 AVERY COURT AT PIT 65/66 29" DEEP TIME READING 12: 30 3" 12: 35 12" 12: 40 17 1/2" 12: 45 20" 12: 55 25" 1: 00 26 1/2" 1: 05 28" 1: 10 DRY	9 AVERY COURT AT PIT 35/36 28" DEEP TIME READING 10: 45 3" 10: 50 12" 10: 55 14 1/4" 11: 00 15 1/4" 11: 05 17 1/4" 11: 15 21" 11: 20 22 1/4" 11: 25 23 1/4" 11: 30 24 1/2" 11: 35 25 3/4" PERC RATE: 1"/4 MINS.
13 AVERY COURT AT PIT 31/32 30" DEEP TIME READING 10: 41 9" 10: 46 12 1/2" 10: 51 15" 10: 56 17" 11: 01 19" 11: 06 19 1/2" 11: 11 20 1/2" 11: 21 22 1/2" 11: 26 23 1/2" PERC RATE: 1"/5 MINS.	13 AVERY COURT AT PIT 33/34 30" DEEP TIME READING 10: 39 7" 10: 44 11" 10: 49 15" 10: 54 19 1/2" 10: 59 20 1/2" 11: 04 22" 11: 09 23" 11: 14 24" 11: 24 25 3/4" PERC RATE: 1"/6.7 MINS.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32" DEEP 29" D TIME READING TIME 11: 24 3 1/2" 1: 41 11: 29 17 1/2" 1: 46 11: 34 21" 1: 51 11: 39 23 1/2" 1: 56 11: 44 25 1/2" 2: 01 11: 49 27 1/2" 2: 06 11: 54 29" 2: 11 11: 59 30 1/2" 12: 25 12: 04 DRY 12: 30	DEEP 29" DE READING TIME 4" 11:45 10" 11:50 13" 11:55 15 1/2" 12:00 17 1/2" 12:05 19" 12:10 20 1/2" 12:20 22 1/4" 12:25 23 1/2" 12:30 25" 12:35	RY COURT AT PIT 77/78 EP READING 3" 7 3/4" 11 1/2" 13 3/4" 16" 18" 20" 21" 22 1/4" 23 1/2" 25" RATE: 1"/4 MINS.	3	
7 AVERY COURT AT PIT 316/317 30" DEEP		PERFORMED ON APRIL 22, 2024 BY DIET	TER & GARDNER, INC.	, <u>12 AVERY COURT AT PIT 304/30</u> 32" DEEP			
TIME READING 11: 47 4" 11: 52 11" 11: 57 15" 12: 02 18 3/4" 12: 07 21 1/4" 12: 12 23" 12: 17 24 1/2" 12: 22 26" 12: 27 27 1/4" PERC RATE: 1"/4 MINS.	TIME READING 8:00 3" 8:05 11" 8:10 13 1/2" 8:15 15 1/2" 8:20 17 1/2" 8:25 19" 8:30 20 3/4" 8:35 22" 8:40 23 1/4" PERC RATE: 1"/4 MINS.	TIME READING 7:58 3 1/2" 8:03 8 1/2" 8:08 13" 8:13 15" 8:18 17" 8:23 19 1/2" 8:33 22" 8:38 23" PERC RATE: 1"/5 MINS.	TIME READING 10:19 3" 10:24 10 1/2" 10:29 15 1/4" 10:34 17 1/4" 10:39 19" 10:44 20 1/2" 10:54 23 1/2" 10:59 25" PERC RATE: 1"/3.33 MINS.	TIME READING 8:45 4" 8:50 10 1/2" 8:55 13 1/2" 9:00 15 1/2" 9:05 17 1/2" 9:10 18 3/4" 9:15 19 1/2" 9:20 20 1/2" 9:25 21 1/2" PERC RATE: 1"/5 MINS.			
13 AVERY COURT AT PIT 314/315 28" DEEP	15 AVERY COURT AT PIT 310/3 30" DEEP	11 <u>16 AVERY COURT AT PIT 306/30</u> 31" DEEP	307 <u>17 AVERY COURT AT PIT 308/309</u> 29" DEEP	TERCERATE. Type winds.			
TIMEREADING11: 455"11: 509"11: 5511 1/2"12: 0013 1/2"12: 0515 1/4"12: 1016 3/4"12: 1518"12: 2019"12: 2520"PERC RATE:1"/5 MINS.	TIMEREADING9: 345"9: 3911"9: 4413 1/2"9: 4915 1/2"9: 5417 1/4"9: 5919"10: 0420 1/2"10: 0921 3/4"10: 1422 3/4"PERC RATE:1"/5 MINS.	TIMEREADING8:475"8:529 1/4"8:5712 1/4"9:0214"9:0715 1/2"9:1216 3/4"9:1718"9:2219"9:2720"PERC RATE:1"/5 MINS.	TIMEREADING9:324"9:3710 1/2"9:4215 1/4"9:4719 1/4"9:5221"9:5722 1/2"10:0223 3/4"10:1225 3/4"PERC RATE:1"/5 MINS.				
	ND ZONING COMMISSION AS TO THE						

APPROVED BY THE LEDYARD PLANNING AND ZONING COMMISSION AS TO THE COMPLIANCE WITH THE REGULATIONS GOVERNING THE SUBDIVISION OF LAND. ALL IMPROVEMENTS SHALL BE COMPLETED BY _ DATE

CHAIRMAN OR SECRETARY

DATE

EROSION AND SEDIMENT CONTROL PLAN CERTIFIED BY THE AFFIRMATIVE VOTE OF THE LEDYARD PLANNING AND ZONING COMMISSION ON DATE

LOT NUMBERS ASSIGNED BY THE ASSESSOR

ASSESSOR

₽

DATE

THIS DRAWING IS THE PROPERTY OF THE LAND SURVEYOR. THIS PLAN AND REPRODUCTIONS, ADDITIONS OR REVISIONS OF THIS PLAN ARE NOT VALID WITHOUT THE EMBOSSED SEAL AND SIGNATURE OF THE LAND SURVEYOR WHO PREPARED THIS PLAN. JOB#22-00718LOT.DWG FBK#327

SANITARY DESIGN CRITERIA

A. ALL PRIMARY AND SEPTIC SYSTEM DESIGNS ARE LAYED OUT FOR THREE-BEDROOM HOMES. NO TUBS OVER 100 GALLONS IN SIZE OR GARBAGE DISPOSAL INTO SEPTIC SYSTEM PLANNED.

B. THREE BEDROOM HOMES AT A PERC RATE OF 10.0 MIN/INCH OR LESS REQUIRES 495 S.F. OF EFFECTIVE LEACHING AREA.

C. GST 6236 LEACHING SYSTEM SELECTED FOR LEACHING SYSTEM DESIGN.

MINIMUM REQUIRED AREA IS 495 S.F. 6236 SYSTEM REQUIRES 20 L.F.

HF = HYDRAULIC FACTOR BASED ON GRADIENT AND DEPTH TO RESTRICTION

FF = FLOW FACTOR, 1.5 FOR THREE BEDROOM HOME DESIGN PF = PERC FACTOR, 1.0 PERCOLATION RATE UP TO 10.0 MIN/INCH.

		MLSS TA	BLE (NOT AF	PLICABLE)		
STREET ADDRESS	GRADIENT	RESTRICTION	HF	FF	PF	SYSTEM
1	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
2	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
3	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
4	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
5	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
6	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
7	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
8	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
9	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
10	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
11	MLSS	NOT	APPLICABLE	1.5	1.0	40 L.F. GST 6236
12	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
13	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
14	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
15	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
16	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
17	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236
18	MLSS	NOT	APPLICABLE	1.5	1.0	20 L.F. GST 6236

PLAN SHOWING AFFORDABLE HOUSING DEVELOPMENT PER C.G.S §8-30g PERCOLATION TEST DATA \mathbf{AND} SEPTIC SYSTEM DESIGN CRITERIA RESUBDIVISION PROPERTY OF AVERY BROOK HOMES LLC 96, 98 & 100 STODDARDS WHARF ROAD A.K.A. CONNECTICUT ROUTE 214 PARCEL ID: 65-2360-96/98/100 LEDYARD, CONNECTICUT

MARCH 2024 REVISED: APRIL 24, 2024 REVISED: MAY 13, 2024 TO ADDRESS LLHD COMMENTS

SHEET 8 OF 8

SIGHTLINE DEMONSTRATION PLAN AFFORDABLE HOUSING DEVELOPMENT PER C.G.S §8-30g PROPERTY OF AVERY BROOK HOMES LLC STODDARDS WHARF ROAD A.K.A. CONNECTICUT ROUTE 214 PARCEL ID: 65-2360-96/98/100 LEDYARD, CONNECTICUT SCALE: 1''=40' HORIZ. 1"=4' VERT. MARCH 2024

			160
			155
			155
			150
4+	-00 4-	-50	145

154

CITY OF GROTON

N/F

ALL IMPROVEMENTS SHALL BE COMPLETED BY DATE CHAIRMAN OR SECRETARY EROSION AND SEDIMENT CONTROL PLAN CERTIFIED BY THE AFFIRMATIVE VOTE OF THE LEDYARD PLANNING AND ZONING COMMISSION ON DATE

DATE

LOT NUMBERS ASSIGNED BY THE ASSESSOR

ASSESSOR

APPROVED BY THE LEDYARD PLANNING AND ZONING COMMISSION AS TO THE COMPLIANCE WITH THE REGULATIONS GOVERNING THE SUBDIVISION OF LAND.

LEGEND

0000000000	STONE WALL
	PROPERTY LINE
	STREET LINE
	EXISTING CONTOUR
≻−−−−−→	PROPOSED CONTOUR
— — <u>B</u> — —	BUILDING SETBACK LINE
	APPROXIMATE DEEP TEST PIT
↔	APPROXIMATE PERC TEST LOCATION
<i>S</i>	UTILITY POLE
н	CONCEPTUAL HOME
Р	CONCEPTUAL PRIMARY SEPTIC
R	CONCEPTUAL RESERVE AREA
W	CONCEPTUAL WELL
TS	TOPSOIL STOCKPILE
8	STREET ADDRESS
33	PROPOSED CATCH BASIN
	STORMTECH SC-740
	EASEMENT AREAS (SEE SHEET 2 FOR DETAILS)
	HAYBALES/SILT FENCE/WOODCHIPS

LIMITS OF DISTURBANCE

THE STONE WALLS AND/OR FENCES SHOWN AS BOUNDARIES MAY HAVE IRREGULARITIES OF COURSE BETWEEN PRINCIPAL POINTS OF COURSE INDICATED.

THE WORD "CERTIFY" IS UNDERSTOOD TO BE AN EXPRESSION OF THE PROFESSIONAL OPINION BY THE LAND SURVEYOR WHICH IS BASED ON HIS OR HER BEST KNOWLEDGE, INFORMATION AND BELIEF. AS SUCH IT CONSTITUTES NEITHER GUARANTEE OR WARRANTY. NOTE: BOUNDARY LINES OF ADJOINING PROPERTIES ARE SHOWN FOR GENERAL INFORMATIONAL PURPOSES ONLY AND ARE NOT TO BE CONSTRUED AS BEING ACCURATELY LOCATED OR DEPICTED.

) THIS DRAWING IS THE PROPERTY OF THE LAND SURVEYOR. THIS PLAN AND REPRODUCTIONS, ADDITIONS OR REVISIONS OF THIS PLAN ARE NOT VALID WITHOUT THE EMBOSSED SEAL AND SIGNATURE OF THE LAND SURVEYOR WHO PREPARED THIS PLAN. JOB# 22-00718LOT.DWG FBK#327

ALL IMPROVEMENTS SHALL BE COMPLETED	CRNING THE SUBDIVISION OF LAND. BY
CHAIRMAN OR SECRETARY	DATE
EROSION AND SEDIMENT CONTROL PLAN C THE LEDYARD PLANNING AND ZONING COM	
OT NUMBERS ASSIGNED BY THE ASSESSO	R

DATE

- 35' x 27' x 6 FEET DEEP STORMTECH UNITS

ASSESSOR

PLAN SHOWING

AFFORDABLE HOUSING

DEVELOPMENT PER C.G.S §8-30g

RESUBDIVISION

PROPERTY OF

AVERY BROOK HOMES LLC

96, 98 & 100 STODDARDS WHARF ROAD

A.K.A.

CONNECTICUT ROUTE 214

PARCEL ID: 65-2360-96/98/100

LEDYARD, CONNECTICUT

SCALE: 1"=40'

MARCH 2024

REVISED: APRIL 24, 2024

REVISED: MAY 13, 2024 TO ADDRESS LLHD COMMENTS

SHEET 3 OF 8

THIS MAP AND SURVEY HAS BEEN PREPARED IN ACCORDANCE WITH SECTIONS 20-300B-1 THROUGH 20-300B-20 OF THE REGULATIONS OF CONNECTICUT STATE AGENCIES-"MINIMUM STANDARDS OF ACCURACY, CONTENT AND CERTIFICATION FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT", ADOPTED EFFECTIVE JUNE 21, 1996, REVISED OCTOBER 26, 2018. IT IS A BOUNDARY SURVEY BASED ON A DEPENDENT RESURVEY CONFORMING TO HORIZONTAL ACCURACY CLASS "D" AND TOPOGRAPHIC ACCURACY T-2. TO MY KNOWLEDGE AND BELIEF, THIS MAP IS SUBSTANTIALLY CORRECT AS NOTED HEREON.

TITLE: LAND SURVEYOR CT No. 14208

DATE: MARCH 25, 2024

SINCE 1966

Appendix B

Washed Sieve Analysis Results

WASHED SIEVE ANALYSIS

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

** Based on empirical relationship by Hazen (1911) relating permeability to the D10 grain size. Accuracy diminishes with >5% passing the #200 Sieve or permeability values <.3 ft/day. Relationship invalid when D10 < .1mm or D10 > 3mm

WASHED SIEVE ANALYSIS

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

** Based on empirical relationship by Hazen (1911) relating permeability to the D10 grain size. Accuracy diminishes with >5% passing the #200 Sieve or permeability values <.3 ft/day. Relationship invalid when D10 < .1mm or D10 > 3mm

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

* Percent Passing the #40 sieve can be increased to no greater than 75% if the percent passing the #100 sieve does not exceed 10% and the #200 does not exceed 5%.

Appendix C

Ground Water Monitoring / Ground Water Contour Maps

1/5/2023							
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation		Ground Water
	(In)	(Ft)	(Ft)	(Ft)	(Ft)		Elevation
100	63	5.25	19.41	17.48	161.27		143.79
101	16	1.33	9.8	3.37	146.34		142.97
102	35	2.92	19.43	18.14	157.16		139.02
103	43	3.58	19.12	DRY	159.25	Below	140.13
104	27	2.25	19.5	DRY	158.5	Below	139.00
105	31	2.58	19.51	DRY	162.64	Below	143.13
106	33	2.75	16.61	DRY	164.1	Below	147.49
107	23	1.92	9.85	DRY	158.06	Below	148.21
108	15	1.25	19.3	19.24	157.2		137.96
109	20	1.67	17.8	DESTROYED	-		-
Well	3	0.25	-	19.42	157.08		137.66
110	16	1.33	25.97	25.7	162.72		137.02
111	18	1.50	26.25	25.31	161.37		136.06
112	15	1.25	22.62	20.49	157.28		136.79
113	28	2.33	23.7	23.14	160.82		137.68
114	17	1.42	18.45	17.97	156.48		138.51
115	20	1.67	13.35	10.31	148.93		138.62

PLANNING —

SCALE IN FEET

1/12/2023							
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation		Ground Water
	(In)	(Ft)	(Ft)	(Ft)	(Ft)		Elevation
100	63	5.25	19.41	17.61	161.27		143.66
101	16	1.33	9.8	3.87	146.34		142.47
102	35	2.92	19.43	18.21	157.16		138.95
103	43	3.58	19.12	DRY	159.25	Below	140.13
104	27	2.25	19.5	DRY	158.5	Below	139.00
105	31	2.58	19.51	DRY	162.64	Below	143.13
106	33	2.75	16.61	DRY	164.1	Below	147.49
107	23	1.92	9.85	DRY	158.06	Below	148.21
108	15	1.25	19.3	19.32	157.2		137.88
109	20	1.67	17.8	DESTROYED	-		-
Well	3	0.25	-	19.56	157.08		137.52
110	16	1.33	25.97	25.78	162.72		136.94
111	18	1.50	26.25	25.59	161.37		135.78
112	15	1.25	22.62	20.69	157.28		136.59
113	28	2.33	23.7	23.21	160.82		137.61
114	17	1.42	18.45	18.03	156.48		138.45
115	20	1.67	13.35	10.51	148.93		138.42

		1	2			
3/22/2024						
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation	Ground Water
	(In)	(Ft)	(Ft)	(Ft)	(Ft)	Elevation
100				15.36	161.27	145.91
101				3.75	146.34	142.59
102				18.02	157.16	139.14
103				DRY	-	#VALUE!
104				DRY	-	#VALUE!
105				DRY	-	#VALUE!
106				DRY	-	#VALUE!
107				DRY	-	#VALUE!
108				18.88	157.2	138.32
109				GONE	-	-
Well				18.9	157.08	138.18
110				24.98	162.72	137.74
111				24.04	161.37	137.33
112				19.57	157.28	137.71
113				22.79	160.82	138.03
114				18.17	156.48	138.31
115				10.08	148.93	138.85

"GROUNDWATER CONTOURS 3-22-24" PREPARED FOR <u>AVERY BROOK HOMES, LLC</u> STODDARDS WHARF ROAD SHEET 3 OF 6 DATE: 6-12-24 SCALE: 1''=40' JOB NO. 226636

> ANGUS McDONALD GARY SHARPE & ASSOCIATES, INC **SINCE 1966**

P.O. BOX 608, 245 BOSTON POST ROAD OLD SAYBROOK, CONNECTICUT 06475 TEL. (860) 388-4671 FAX (860) 388-3962

5/8/2024							
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation		Ground Water
	(In)	(Ft)	(Ft)	(Ft)	(Ft)		Elevation
100				14.28	161.27		146.99
101				3.46	146.34		142.88
102				17.62	157.16		139.54
103				DRY	-		#VALUE!
104				DRY	-		#VALUE!
105				DRY	-		#VALUE!
106				DRY	-		#VALUE!
107				DRY	-		#VALUE!
108				18.46	157.2		138.74
109				GONE	-		-
Well				18.4	157.08		138.68
110				DRY	-	Below	#VALUE!
111				23.9	161.37		137.47
112				19.26	157.28		138.02
113				22.34	160.82		138.48
114				17.94	156.48		138.54
115				9.64	148.93		139.29
5/8/2024							
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation		Ground Water
	(In)	(Ft)	(Ft)	(Ft)	(Ft)		Elevation
200				8.27	148.94		140.67
201				7.95	160.72		152.77
202				5.02	147.04		142.02
203				16.06	155.47		139.41
204				13.64	151.65		138.01
205				2.07	138.12		136.05
206				10.5	147.77		137.27
207				26.6	163.87		137.27
208				NOT DONE			-
209				14.72	159.8		145.08

4/19/2024						
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation	Ground Water Elevation
	(In)	(Ft)	(Ft)	(Ft)	(Ft)	
100				15.94	161.27	145.33
101				3.52	146.34	142.82
102				18.11	157.16	139.05
103				DRY	-	#VALUE!
104				DRY	-	#VALUE!
105				DRY	-	#VALUE!
106				DRY	-	#VALUE!
107				DRY	-	#VALUE!
108				19.11	157.2	 138.09
109				GONE	-	-
Well				19.12	157.08	137.96
110				25.41	162.72	137.31
111				24.59	161.37	136.78
112				19.9	157.28	137.38
113				23	160.82	137.82
114				18.14	156.48	138.34
115				10.22	148.93	138.71
4/19/2024						
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation	Ground Water
	(In)	(Ft)	(Ft)	(Ft)	(Ft)	Elevation
200				9.04	148.94	 139.90
201				8.96	160.72	151.76
202				5.01	147.04	142.03
203				16.45	155.47	139.02
204				13.8	151.65	137.85
205				2.3	138.12	135.82
206				11.03	147.77	136.74
207				27.21	163.87	136.66
208				NOT DONE		-
209				16.57	159.8	143.23

"GROUNDWATER CONTOURS 4-19-24" PREPARED FOR <u>AVERY BROOK HOMES, LLC</u> STODDARDS WHARF ROAD LEDYARD, CONNECTICUT SHEET 5 OF 6 DATE: 6-12-24 SCALE: 1"=40' JOB NO. 226636

SCALE IN FEET

ANGUS McDONALD GARY SHARPE & ASSOCIATES, INC SINCE 1966

 Description
 P.0.
 BOX 608, 245
 BOSTON POST ROAD

 OLD SAYBROOK, CONNECTICUT 06475
 TEL. (860) 388-4671
 FAX (860) 388-3962

5/2/2024						
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation	Ground Water Elevation
	(In)	(Ft)	(Ft)	(Ft)	(Ft)	Elevation
100				17.74	161.27	143.53
101				3.9	146.34	142.44
102				18.44	157.16	138.72
103				DRY	-	#VALUE!
104				DRY	-	#VALUE!
105				DRY	-	#VALUE!
106				DRY	-	#VALUE!
107				DRY	-	#VALUE!
108				DRY	157.2	
109				GONE	-	-
Well				19.65	157.08	137.43
110				25.8	162.72	136.92
111				25.14	161.37	136.23
112				20.35	157.28	136.93
113				23.31	160.82	137.51
114				18.39	156.48	138.09
115				10.67	148.93	138.26
5/2/2024						
Monitor Pipe	Top of Pipe to Grade	Top of Pipe to Grade	Top of Pipe to Bottom	Top of Pipe to Water	Top of Pipe Elevation	Ground Water
	(In)	(Ft)	(Ft)	(Ft)	(Ft)	Elevation
200				DRY	148.94	#VALUE!
201				DRY	160.72	#VALUE!
202				5.45	147.04	141.59
203				16.84	155.47	138.63
204				14.04	151.65	137.61
205				2.71	138.12	135.41
206				11.66	147.77	136.11
207				27.85	163.87	136.02
208				NOT DONE		-
209				DRY	159.8	#VALUE!

"GROUNDWATER CONTOURS 5-2-24" PREPARED FOR <u>AVERY BROOK HOMES, LLC</u> STODDARDS WHARF ROAD SHEET 6 OF 6 DATE: 6-12-24 SCALE: 1"=40' JOB NO. 226636

ANGUS McDONALD GARY SHARPE & ASSOCIATES, INC **SINCE 1966**

 O
 BOX 608, 245 BOSTON POST ROAD

 OLD SAYBROOK, CONNECTICUT 06475

 TEL. (860) 388-4671 FAX (860) 388-3962

GARY SHARPE & ASSOCIATES, INC. SINCE 1966

Appendix D

12-8-2022 Test Hole Logs

<u>TEST HOLE DATA</u> DATE: 12-8-2022 PRESENT: STUART FAIRBANK (ALMGPS) FERN TREMBLAY (ALM/GPS) PETER GARDNER (OWNER)

TP 100

0-9" TOPSOIL

9-34" ORANGE BROWN FINE SILTY LOAM

34-175" LIGHT GRAY BROWN MEDIUM LOAMY SAND W/ GRAVEL & ROCKS

TUBE @ 47" BAG @ 42-48"

NO MOTTLING NO WATER NO LEDGE

TP 101

- 0-9" TOPSOIL
- 9-16" TAN FINE SILTY LOAM
- 16-36" DARK BROWN MEDIUM-COARSE LOAMY SAND & GRAVEL

36-96" GRAY BROWN MEDIUM LOAMY SAND POCKET OF FINE GRAY SAND 36-45" NORTH SIDE OF TEST HOLE

TUBE @ 38" BAG @ 30-36"

MOTTLING @21" WATER @ 26" NO LEDGE

TP 102 0-9" TOPSOIL 9-34" ORANGE BROWN FINE SILTY LOAM 34-175" LIGHT BROWN MEDIUM-COARSE SAND & GRAVEL W/ STONES

TUBE @ 48" BAG @ 42-48" BAG @180-186"

NO MOTTLING WATER @ 204" NO LEDGE

TP 103 0-10" TOPSOIL 10-31" ORANGE BROWN FINE SILTY LOAM 31-198" LIGHT BROWN BANDED MEDIUM-COARSE SAND & GRAVEL W/ STONES

TUBE @ 48" BAG @ 42-48" BAG @ 165-171"

NO MOTTLING NO WATER NO LEDGE

TP 104 0-17" TOPSOIL 7-37" ORANGE BROWN FINE SILTY LOAM 37-210" LIGHT BROWN BANDED MEDIUM-COARSE SAND & GRAVEL W/ STONES

TUBE @ 48" BAG @ 42-48"

NO MOTTLING NO WATER NO LEDGE

TP 105 0-9" TOPSOIL 9-32" ORANGE BROWN FINE SILTY LOAM 32-216" LIGHT BROWN BANDED MEDIUM-COARSE SAND & GRAVEL W/ STONES

TUBE @ 48" BAG @ 42-48"

NO MOTTLING NO WATER NO LEDGE

TP 106 0-9" TOPSOIL 9-23" ORANGE BROWN FINE SILTY LOAM 23-204" LIGHT BROWN BANDED MEDIUM-COARSE SAND & GRAVEL W/ STONES

TUBE @ 57" BAG @ 55-60"

NO MOTTLING NO WATER NO LEDGE

TP 107 0-12" TOPSOIL 12-35" DARK BROWN FINE SILTY LOAM 35-91" BROWN MEDIUM-COARSE BANDED SAND & GRAVEL W/ STONES

NO MOTTLING NO WATER LEDGE @ 91"

TP 108 0-13" TOPSOIL 13-39" ORANGE BROWN FINE SILTY LOAM 39-210" LIGHT BROWN BANDED MEDIUM-COARSE SAND & GRAVEL W/ STONES

TUBE @ 48" BAG @ 46-50"

NO MOTTLING NO WATER NO LEDGE

WELL 22' DEEP (30' NORTH TP 107) WATER @ 19'

TP 109 0-11" TOPSOIL 11-36" ORANGE BROWN FINE SILTY LOAM 36-194" LIGHT BROWN BANDED MEDIUM-COARSE SAND & GRAVEL W/ STONES

TUBE @ 52" BAG @ 46-52"

NO MOTTLING NO WATER NO LEDGE

& ASSOCIATES, INC.

Appendix E

Onsite Wastewater Technology Testing Report

Onsite Wastewater Technology Testing Report

Massachusetts Alternative Septic System Test Center Air Station Cape Cod, Massachusetts 02542 Telephone: 508-563-6757 MASSTC@barnstablecounmty.org

-- May 2021—

Performance Evaluation GeomatrixTM GST 6212 January 2019 – March 2021

Technology Vendor

Geomatrix[™] Systems LLC 114 Mill Rock Road East Old Saybrook, CT 06475 geomatrixsystems.com I certify that I represent the Massachusetts Alternative Septic System Test Center, a project of the Barnstable County Department of Health and Environment, Barnstable County Massachusetts. I further certify that I am authorized to report the testing results for this proprietary treatment product. I attest that the details described in this report regarding the test protocol and results are true and accurate to the best of my knowledge.

Jeorge Henfelder

George Heufelder, M.S., R.S. Barnstable County Department of Health and Environment Massachusetts Alternative Septic System Test Center

Section 1.0 Introduction

The Massachusetts Alternative Septic System Test Center (MASSTC) is located at the Otis Air National guard military base in Falmouth, Massachusetts. The Test Center is operated by the Barnstable County Department of Health and Environment.

The mission of MASSTC is to provide a location for the verification and testing of onsite wastewater treatment technologies and components. MASSTC conducts testing under various protocols, some of which are widely recognized. Of note, the National Sanitation Foundation International (NSF) has employed MASSTC to conduct its standard protocol ANSI/NSF Standard 40 on a number of onsite septic system technologies. In addition, MASSTC has performed a number of verification tests in accordance with a nutrient testing protocol jointly developed with industry, NSF, and the United States Environmental Protection Agency (USEPA) known as the Environmental Technology Verification Program (ETV). Finally, MASSTC has been used to conduct the nitrogen reduction standard NSF/ANSI Standard 245. The Center also conducts independent research for the Commonwealth of Massachusetts and assists the onsite industry by providing a platform and facility for research and development of wastewater treatment products.

This report describes the GST 6212 product hydraulic response and treatment performance over 109 weeks (testing continues through to the date of this report). For this evaluation, the same influent and discharge parameter requirements specified in NSF/ANSI Standard 40 were used and more data points were collected, additionally the present test was conducted over a more extensive time period than required in the NSF/ANSI Standard 40. A comparison of the present test metrics, the NSF/ANSI Standard 40, and the USEPA ETV Program are provided in Table 1. Of particular note is that the duration of this reported test was four times that of the aforementioned standard and allowed the evaluation of the system to span all seasons. In addition, stress test laundry loads specified in the ANSI/NSF 40 Standard were added instead of being substituted to daily hydraulic loads and the present test included a period of extended stress representing two types of added stress compared with Standard 40.

Section 2.0 Test Cell Construction

The GST Leaching System (GST) was installed using patented removable forms that create threedimensional leaching "fingers" along the side of a central distribution channel. Each finger is filled with washed stone aggregate, alternating, and then surrounded by ASTM C-33 sand (Figure 1). Once the form was filled to 12 inches, it was removed, and a distribution pipe was positioned down the central channel to distribute effluent to the GST. The GST was placed above 12 inches of ASTM C33 sand. The entire system was constructed within a lined test cell such that all percolate passing through the system could be sampled.

Observation ports were installed at the stone-sand interface for monitoring the ponding depth throughout the study period. A 1500-gallon septic tank was installed with a distribution box which conveyed the septic tank effluent to the GST. A central underdrain within the containment liner served as a sample collection point and was flushed weekly on Fridays to avoid compromising regular samples (since no samples were taken for the two following days). This flushing schedule was modified as necessary during stress loading to avoid sampling days required during those events.

Evaluation of Geomatrix LLC – Gravel Stone Treatment (GST)

 Table 1: Differences between ANSI/NSF Standard 40, USEPA ETV, and the present test;

	ANSI/NSF 40	USEPA ETV	MASSTC Test
Testing duration	26-34 weeks	52 weeks	109 weeks
Data days 96 (5x per week)		16 (12 samples taken each calendar month no less than ten days after the preceding sample and 4 supplemental samples immediately preceding or following one of the monthly samples)	100 (1x per week for 17 weeks, every other week for 11 weeks, and 1x per month for 40 weeks, <5x per week for 8 weeks (stress test), approx. 2x per month for 24 weeks, and 5x per week for 9 weeks)
Start-up	3 weeks if requested	Vendor-specified	None (results do not change when first 3 weeks excluded)
Timeframe requirements	May occur in any seasons spanning the 6-month test- not prescribed by protocol.	Spanned all seasons for cold weather performance verification.	Spanned all seasons for cold weather performance verification.
Stress Test	Four phases: wash days, working parent, and power failure.	Not performed	Five phases: wash days (added in addition to design load), working parent, power failure, and extended stress (loading at twice the hydraulic loading rate every day for three months)
Analytic parameters	TSS, BOD _{5-day} , cBOD _{5-day} , pH, temperature, Dissolved Oxygen	TSS, cBOD _{5-day} , COD, temperature, pH, FOG, TKN, NO ₃ ⁻ +NO ₂ ⁻ , NH ₃ , Alkalinity, TP, SP, Fecal coliform, <i>E.</i> <i>coli</i>	TSS, BOD ₅ - day/cBOD ₅ -day, pH, Fecal coliform, NH4 ⁺ , NO ₂ ⁻ , NO ₃ ⁻ , TKN, TN (by calculation), TP, Dissolved Oxygen, temperature
Hydraulic analysis	Visual inspection for surface breakout; no hydraulic function analysis	None specified	Ponding measurements collected twice weekly from a proximal and distal observation port

Figure 1. Plan view of the GST (series 62) product. Twelve-inch height of system was used in the test (source Geomatrix[™] LLC)

Figure 2 Experimental design of GST trench. Ports indicate location of ponding observations.

Section 3.0 Sampling protocol and schedule

Raw wastewater was supplied in thirty discrete doses totaling 300 gallons per day to the septic tank in accordance with the following schedule: 0600 – 0900h 35% of daily flow, 1100 – 1400 25% of daily flow, and 1700 – 2000 h 40% of daily flow. The GST component received 150 gallons per day from the septic tank, while the other 150 gallons was diverted elsewhere. Each dose to the septic tank during these periods did not exceed 10 gallons which follows the ANSI/NSF Standard 40 requirement; we define this as the "normal" hydraulic load. Wastewater treatment performance was evaluated using parameters of ANSI/NSF Standard 40 tests (cBOD _{5-day} and TSS) and supplemental tests for nutrients, as described in the introduction. Final effluent was collected from the bottom drain over a 24-hour period using an ISCOTM composite sampler. Hydraulic performance was determined using ponding observations from two ports in the GST (Figure 2). All sample collection and ponding measurements were taken by staff of MASSTC/Barnstable County Department of Health and Environment. All analyses were performed using Standard Methods at laboratories certified by the Commonwealth of Massachusetts including the Barnstable County Department of Health and Environment Laboratory.

Twenty-four-hour composite samples were taken weekly for five-day Carbonaceous Biological Oxygen Demand (cBOD_{5-day}), Total Suspended Solids) TSS, NH₄⁺, NO₂⁻, NO₃⁻, Total Kjeldahl Nitrogen (TKN), and Total Phosphorus (TP) from January 31, 2019 through May 22, 2019. From June through August of 2019, sampling was reduced to every two weeks. The system was sampled once a month from October 2019 through May 2020. Total nitrogen values reported are by calculation of TKN plus nitrate-nitrite. Fecal coliform concentrations were collected from the system twice a week from January 31 through May 22, 2019 and was reduced to approximately once per week from May 28 through October 16, 2019 and further reduced to twice a month from November through January 2020. Fecal coliform was analyzed at least once a month from February through May of 2020. Fecal coliform and field parameters including temperature, pH and dissolved oxygen were taken as grab samples, while all other chemical parameters and biochemical oxygen demands (BOD_{5-day}and cBOD_{5-day}) were obtained from 24-hour composites samples. For any samples indicating levels of cBOD_{5-day} or TSS below the detection limit of 2 mg/L, one-half of the detection limit (1.0 mg/L) was reported and used in calculations.

Four stress tests were performed from June through August of 2020. The first stress test was a wash day stress occurring from June 2 through June 6, 2020 and consisted of three wash days with 24 hours between each wash day for a total of five consecutive days. During the wash days, the system was dosed normally plus three wash loads (one wash cycle and two rinse cycles each) in the first two daily doses. This differs from the stress tests performed under NSF STD 40 in that, for NSF STD 40, the normal hydraulic load is discontinued and the wash loads are *substituted* for the normal hydraulic loads. The second stress test was the working parent stress test performed June 15 through June 20, 2020. During this stress, the system was dosed with 40% of its daily hydraulic capacity between 6:00 am and 9:00 am. Between 5:00 pm and 8:00 pm, the system is dosed with the remaining 60% of its daily hydraulic capacity, which included one wash load. The third stress test was the power/equipment failure test which was performed from July 3 through July 6, 2020. The power failure test as described in the standard was originally designed for mechanical units requiring electric power. Since the GST requires no power, the test is simply comprised of turning flow to the system off as prescribed in the test. Accordingly, flow was turned off on July 3, 2020 at 8 p.m. for 48 hours. Flow was restored to the system on July 6, 2020 and was dosed with 60% of the daily load between 6 a.m. and 9 a.m. The vacation stress test was the final stress and was performed from July 20 through July 27, 2020. For this stress, flow to the system is discontinued for eight consecutive days and then flow is restored and 60% of the daily load (including

Evaluation of Geomatrix LLC – Gravel Stone Treatment (GST)

three wash loads) is delivered to the system between 5 p.m. and 8 p.m. During the stress test in the summer of 2020, final effluent was analyzed for fecal coliform, TSS, and cBOD_{5-day} concentrations on June 2, June 8-12, June 15, June 24-26, June 29, July 8-10, July 13-14, July 28-30. Samples were also analyzed for nutrients on June 25, July 14, and July 29, 2020.

After the four stress test phases, the system was loaded with twice the normal design flow from August 26, 2020 through December 29, 2020 to simulate extended stress. During the extended stress test, effluent was analyzed nine times for fecal coliform and five times for cBOD_{5-day} and TSS. From January 4 through March 3, 2021, effluent from the GST was analyzed each week for Fecal coliforms and 5 days a week for cBOD_{5-day} and TSS.

Ponding observations were taken from each of the two ports twice weekly from February 2019 through March 2021 by measuring the liquid level with a measuring tape. We translated ponding measurements into the amount of area hydraulically in use by determining what portion of the system would be in use/wetted given the level of ponding. We have reported hydraulic function using raw ponding level data and the amount of surface area in use during a ponding observation.

Section 4.0 Results

Section 4.1 Influent Characteristics

Wastewater influent levels were measured throughout the effluent sampling period, however at a greater sampling frequency than effluent. During the non-stress period, January 2019 – March 2021, over 350 influent samples were taken. Biochemical Oxygen Demand Levels (BOD_{5-day}) averaged 192 mg/L (185–199 mg/L, p=.05, n=359). TSS level averaged 157 mg/L (149 – 165 mg/L, p=.05, n=359). The range in pH was 6.6 - 7.4 pH units. The geometric mean fecal coliform density was 2.7×10^6 cfu/100 ml. Influent temperatures varied seasonally and ranged from 5.5 - 22.9 C°. Other chemical parameters measured included TN (calculated by the addition of nitrate-nitrite + Total Kjeldahl Nitrogen), ammonia, TP, dissolved oxygen (mg/L), and alkalinity. All influent parameters met the requirements specified in national testing protocols.

Section 4.2 Treatment performance results

The GST test was initiated during the winter months to simulate worst possible conditions for start-up performance. The system was loaded at non stress levels (full design loading) from January 2019 through May 2020 and January through March 2021. A stress test in four phases (wash day, power failure, vacation, and working parent) was performed during June and July 2020. In August 2020, and extended stress test was started and the system was loaded at twice the daily load every day through December 2020.

A summary of all data is presented in Table 2 and all data points are presented in the appendices. There were no data exclusions; that is no data were excluded from the statistical analyses.

	cBOD/BOD (mg/L)	TSS (mg/L)	Ammonia (mg/L)	Total Nitrogen (mg/L)	Total Phosphorus (mg/L)	Fecal coliform (cfu)
GST product trench (n=)	2.0 (101)	2.4 (100)	15.6 (41)	35.5 (41)	3.2 (41)	2.2 x 10 ³ (109)
confidence limits $p=0.05$	1.9 - 2.2	1.8 – 2.7	14.2 - 16.9	34.6 - 36.4	3.1 – 3.3	Geometric Mean
Influent (n=)	192 (359)	157 (359)	29.7 (297)	43.1 (262)	4.8 (86)	2.7 x 10 ⁶ (359)
confidence limits $p=0.05$	185 – 199	149 – 165	29.0 - 30.0	42.6 - 44.0	4.5 - 5.2	Geometric Mean

Table 2 Summary of GST water quality analysis collected by MASSTC (2019-01-30 through 2021-03-03).

The GST product removed ~98% of the secondary wastewater constituents of BOD_{5-day} and TSS. In addition, there was a three log_{10} removal (99.9 %) of fecal coliform, the commonly accepted surrogate for human pathogen removal.

Section 4.2 Treatment Performance following wash days, working parent, power failure, and vacation stress testing

Sample data taken following the above-referenced stress tests show no significant difference when compared with non-stress periods (Table 3). In addition to the secondary treatment contaminants, nutrient concentrations from the GST were analyzed once following each stress event (Table 3).

Table 3. Summary of influent and discharge data taken following four stress events. Data from all samples following the stress events are combined.

		TSS		Total	Total	
	cBOD/BOD	(mg/L)	Ammonia	Nitrogen	Phosphorus	Fecal coliform
	(mg/L)		(mg/L)	(mg/L)	mg/L	(cfu)
GST product trench (n=)	1.0 (24)	1.5 (24)	3.7 (4)	40.7 (4)	1.5 (4)	3.9 x 10² (24)
confidence limits p=.05	0.8 - 1.2	1.0 - 2.0	0.0 - 8.5	31.1 - 50.3	1.0 - 2.0	Geometric Mean
Influent (n=)	186 (37)	160 (37)	28.6 (23)	43.7 (24)	1.5 (10)	1.8 x 10⁶ (32)
confidence limits p=.05	166 - 206	126 - 194	26.1 - 31.1	41.7 - 45.7	1.2 - 1.8	Geometric Mean

TSS were not detected from the GST during the first three stress tests and only increased to 4 mg/L after the vacation stress test (Figure 3). Coincident TSS concentrations in the influent wastewater source ranged from 82-330 mg/L. Changes in fecal coliform concentrations from the GST during the stress test showed a similar pattern as the TSS concentrations. The peak density of fecal coliform following the first four phases of the stress tests was 16,000 cfu/100 ml, with a geometric mean of all 23 post-stress observations equal to 390 cfu/ 100ml During the stress tests, fecal coliform concentration in the raw wastewater had a geometric mean of 1.8×10^6 cfu/100 ml. The cBOD_(5-day) levels were below detection levels in the GST for all portions of the stress test except for after the vacation portion of the stress test when the concentration was 3 mg/L (Figure 3). During the stress test, the BOD in the wastewater source ranged from 100 to 250 mg/L, BOD.

Section 4.3 Treatment Performance during extended stress

Table 4. Summary of GST water quality analysis collected by MASSTC during a period of extended stress (2020-08-26 through 2020-12-30).

	cBOD/BOD (mg/L)	TSS (mg/L)	Ammonia (mg/L)	Total Nitrogen (mg/L)	Total Phosphorus (mg/L)	Fecal coliform (cfu)
GST product	2.0 (5)	1.7 (5)	3.8 (5)	29.2 (5)	4.0 (5)	$3.0 \ge 10^4$
trench (n=)						(9)
confidence limits	3.1 - 4.5	1.5 - 1.9	3.1 - 4.5	27.9 - 30.5	3.8 - 4.2	Geometric
<i>p</i> =0.05						Mean
Influent (n=)	161(83)	123(83)	27.0(60)	41.4(45)	5.4(19)	2.8 x 10 ⁶
						(83)
confidence limits	152 - 171	115 - 130	25.8 - 28.4	39.0 - 43.8	5.7 - 5.7	Geometric
p=0.05						Mean

There were no significant differences in Total Nitrogen, cBOD_{5-Day}, or Fecal coliform concentrations between normal use and this period of extended stress. Ammonia and TSS concentrations were significantly lower during extended stress than during normal use, and Total Phosphorus is significantly higher during extended stress than during the periods of normal use.

Section 4.4 Hydraulic performance results

No breakout of effluent was observed during the test. The ponding in the GST ranged from no observed ponding to 6.8 inches of ponded water. We estimate that less than 25% of the effective soil absorption surface was used during the normal use and first four stress test phases of this test. After the period of extended stress, ponding increased and we estimate that less than 60% of the effective soil absorption was used.

Section 5.0 Summary

Under the conditions of this test, the GST produced a percolate that exceeds secondary treatment standards (30 mg/L Carbonaceous Biochemical Oxygen Demand and Total Suspended Solids). Throughout the test, which included five stress periods, the percolate did not exceed 10 mg/L cBOD_{5-day}, or 20 mg/L TSS. For the entire test period including the five stress events, less than 25% of the effective soil absorption area was utilized.

Data Appendices

<u>Key</u>

- NH₄ ammonium (mg/L)
- BOD 5-day Biochemical Oxygen Demand (mg/L)
- cBOD 5-day Carbonaceous Biochemical Oxygen Demand (mg/L)
- DO Dissolved Oxygen (mg/L)
- $NO_2 Nitrite nitrogen (mg/L)$
- $NO_3 Nitrate nitrogen (mg/L)$
- Fecal Coli Fecal coliform (colony forming units/100 mL)
- pH pH units
- Temp Temperature in degrees Celsius
- TKN Total Kjeldahl nitrogen

TP – Total Phosphorus

TSS – Total Suspended Solids (mg/L)

Sample Date		Alkalinity	NH ₄	cBOD₅	DO	Fecal Coli	NO₃	NO ₂	рН	Temp	TKN	TN	ТР	TSS
2019-01-31	GST		50	6.5	10.3	210,000	0.74	0.46	7.5	0.62	47	48.2	1.5	7
2019-02-05	GST					340,000								
2019-02-07	GST	220	29	10	8.73	770,000	0.05	0.03	7.3	2.99	34	34.1	2.7	9
2019-02-11	GST				8.92	32,000			7.06	3.37				
2019-02-14	GST		23	7.2	8.23	200,000	0.67	0.03	7.04	3.15	30	30.7	2.5	7
2019-02-19	GST					30,000								
2019-02-20	GST		36	4.7	8.21	13,000	0.79	0.03	6.96	3.26	35	35.8	3.6	8
2019-02-25	GST				10.7	5,600			6.06	3.46				
2019-02-27	GST		31	4.9	5.75	2,500	4.1	0.03	6.7	3.2	32	36.1	3.2	5
2019-03-04	GST				4.47	13,000			6.83	3.13				
2019-03-06	GST		35	4.9	6.58	4,500	1.6	0.03	6.72	2.84	36	37.6	3.8	6
2019-03-11	GST				4.05	4,700			6.41	2.78				
2019-03-13	GST		27	5.7	9.19	2,800	1.9	0.03	6.41	2.81	27	28.9	3.2	6
2019-03-18	GST				6.68	7,700			6.98	4.17				
2019-03-20	GST		32	6.5	4.84	4,000	1.3	0.11	6.69	3.62	32	33.4	3.8	3
2019-03-25	GST				6.28	730			6.56	4.51				
2019-03-27	GST		33	3.3	7.02	1,200	1.9	0.13	6.84	4.69	30	32	3.9	4
2019-04-01	GST				7.72	8,900			7.05	5.49				
2019-04-03	GST		36	3.6	5.72	5,300	0.98	0.11	6.85	5.81	36	37.1	4	7
2019-04-03	GST				5.72				6.85	5.81				
2019-04-08	GST				5.22	600			6.71	6.32				
2019-04-10	GST		35	7.8	4.06	450	5	0.16	6.72	7.8	33	38.2	4.3	4
2019-04-16	GST				5.34	72			6.63	8.6				
2019-04-18	GST		23	1	4.13	120	9.4	0.44	6.67	8.9	32	41.8	4.3	2
2019-04-22	GST				3.64	54			6.5	9.8				
2019-04-24	GST		30	1	3.66	2,300	8.6	0.68	6.42	10.1	31	40.3	4.7	4
2019-04-29	GST				5.78	3,800			6.4	10.6				
2019-05-01	GST		20	1	4.2	8,500	16	0.82	6.47	10.4	24	40.8	3.8	1
2019-05-06	GST				3.55	38,000			6.42	10.7				
2019-05-09	GST		15	1	4.62	4,100	19	1.2	6.38	10.8	16	36.2	3.3	1
2019-05-14	GST				4.61	32,000			6.25	11.5				
2019-05-15	GST		12	3.4	2.66	140,000	20	3	6.34	11.4	14	37	3.8	3
2019-05-20	GST				2.77	2,700			6.14	12.1				<u> </u>
2019-05-22	GST		11	6.2	3.73	20,000	20	4.9	6.22	12.8	16	40.9	3.8	0.75
2019-05-28	GST				5.66	3,900			6.71	14.1				<u> </u>
2019-06-05	GST		17	6.1	1.87	9,200	14	2.4	6.46	15.2	15	31.4	3.1	8
2019-06-12	GST				4.37	11,000			6.45	16.8				<u> </u>
2019-06-19	GST		13	6.1	2.89	6,600	22	3.2	6.26	17.1	16	41.2	3.7	11
2019-06-26	GST				3.52	3,000			6.16	18				
2019-07-02	GST		12	8.5	3.8	33,000	23	0.32	6.16	19.3	16	39.3	2.1	7.5
2019-07-10	GST				3.32	14,000			6.11	20.8				

Analytical Data GST

Page 1 of 4

2019-07-17	GST	12	1	3.54	3,200	30	1.2	6.09	22	14	45.2	3.7	5
2019-07-24	GST	12	1	5.18	6,100		112	5.95	22.6	1	1312	5.7	
2019-07-31	GST	1.7	1	3.77	10,000	43	0.93	5.27	22.9	3.4	47.3	3.6	4.7
2019-08-07	GST	 117		4.16	3,200		0150	5.65	23.6		1715	510	
2019-08-14	GST	2.3	1	4.69	690	47	0.22	5.16	23.2	3.2	50.4	3.6	5
2019-08-14	GST			4.67				6.28	21.3				
2019-08-21	GST			4.48	2,100			4.96	23.4				
2019-08-28	GST			5.5	2,200			4.77	22.7				
2019-09-04	GST			8.04	1,300			6.27	21.9				
2019-09-18	GST			7.98	9,400			5.5	19.2				
2019-09-25	GST			7.71	1,100			5.33	20.2				
2019-10-02	GST			3.87	11,000			5.79	19.7				
2019-10-09	GST	3.8	1	8.11	7,600	27	0.21	5.96	16.6	5.3	32.5	4.2	2
2019-10-09	GST			8.11				5.96	16.6				
2019-10-16	GST			6.95	430			5.48	16.5				
2019-10-16	GST			7.78				5.62	15.8				
2019-11-07	GST			8.37	130			5.18	14.4				
2019-11-14	GST	0.36	1	6.99	310	0.38	0.03	4.41	12.6	1.1	1.51	3.1	1
2019-12-05	GST			7.12	870			6.23	8.9				
2019-12-12	GST	5.3	1	6.56	99	15	0.23	6.03	8.5	5	20.2	1.6	1
2019-12-19	GST			5.13	3,700			5.99	8				
2020-01-09	GST	13	6.6	3.78	29,000	11	0.29	6.37	6.5	15	26.3	3.1	3.6
2020-01-30	GST			6.3	990			6	5.4				
2020-02-11	GST	7.1	1	6.19	9	25	0.29	5.83	5.4	8.7	34	3.8	1
2020-02-25	GST			6.17	250			6.25	5.3				
2020-03-10	GST	 10	1	5.21	680	23	0.23	6.09	6.1	12	35.2	1.5	1
2020-04-29	GST	7.8	1	5.59	1,200	19	0.16	5.65	8.3	8.5	27.7	3	2.4
2020-05-13	GST			5.75	310			4.98	10.4				
2020-05-27	GST	5.6	1	3.31	100	32	0.16	5	13.3	7.6	39.8	1	2
				STRES	SS TEST DA	ATA				-	1		
2020-06-02	GST		1	4.37	5			3.57	15.1				1
2020-06-08	GST		1	6.97	31			5.01	16.6				1
2020-06-09	GST		1	6.17	130			5.13	16.4				1
2020-06-10	GST		1	5.92	270			4.91	16.7				1
2020-06-11	GST	0.27	1	7.09	120	46	0.17	5.47	16.9	2.4	48.6	1.2	1
2020-06-12	GST		1	8.62	30			5.28	17.4				1
2020-06-15	GST		1	5.18	370			4.22	17				1
2020-06-22	GST		1	7.45	220			3.45	19.3				1
2020-06-23	GST		1	5.32	500			3.47	18.9				1
2020-06-24	GST		1	4.32	110			3.87	19				1
2020-06-25	GST	2.1	1	4.62	400	23	0.2	4.07	19.3	4.3	27.5	1.4	1
2020-06-26	GST		1	4.4	260			3.99	19.3				1
2020-06-29	GST		1	4.25	510			4.63	19.7				1

2020-07-08	GST		1	5.02				3.42	20.1				1
2020-07-09	GST		1	4.66	1,500			3.69	20.1				1
2020-07-10	GST		1	4.64	380			3.3	20.2				1
2020-07-13	GST		1	5.34	540			3.3	20.8				1
2020-07-14	GST	1.4	1	4.46	120	34	0.15	3.39	20:0	4.9	39.1	1.4	1
2020-07-28	GST	<u> </u>	3	3.46	16,000		0110	5.11	22.4		5511	<u> </u>	4
2020-07-29	GST	11	1	3.33	14,000	34	0.6	5.5	22.5	13	47.6	1.4	4
2020-07-30	GST		1	3.04	4,100	-		5.27	22.8				3.2
2020-07-31	GST		1	3.16	390			5.23	22.9				5.2
2020-08-03	GST		1	3.26	2,200			3.99	22.8				1
2020-08-04	GST		1	3.71	2,900			3.84	22.9				1
2020-08-19	GST			4.7	2,700			5.11	22.5				
2020-09-02	GST	10	4	2.78	20,000	30	0.41	5.78	22.2	12	42.4	4.8	1
2020-09-16	GST			2.5	140,000			6.25	21.5				
2020-09-30	GST	1.5	1	3.2	2,800	32	0.57	5.98	20.3	2.7	35.3	4.5	2
2020-10-14	GST			3.25	1,200			5.66	18.6				
2020-10-28	GST	 2.3	1	2.67	8,800	26	0.82	5.93	17.3	3.5	30.3	4.5	1
2020-11-12	GST			2.66	2,900			5.69	15.2				
2020-11-23	GST			3.39	2,200			5.71	13.4				
2020-11-24	GST	3.5	1	3.48		23	0.54	5.57	13.2	4.5	28	3.7	1
2020-12-09	GST			3.1	87,000			6.12	11.3				
12/22/2020	GST	7.9	5	2.48	41,000	13	0.58	6.34	9.2	9.6	23.2	3.3	2.8
			NOR	MAL LC	ADING RES	STARTE	D						
2021-01-04	GST		1	3.09				6.12	8.3				1
2021-01-04	GST		1	2.98				6.05	8.2				1
2021-01-05	GST		1	3.19	980			5.98	8.2				20
2021-01-00	GST		1	3.11	900			6.12	7.8				1
2021-01-08	GST		1	3.04				6.14	8				1
2021-01-11	GST		1	2.44				6.26	7.5				1
2021-01-12	GST		1	2.46				6.21	7.4				1
2021-01-13	GST		1	3.97	6,500			6.22	7				1
2021-01-14	GST		1	2.32	0,000			6.22	7.1				1
2021-01-15	GST		1	2.46				6.1	7.1				1
2021-01-19	GST		1	4.66				6	7.3				1
2021-01-20	GST	8.8	1	3.94	3,900	21	0.55	5.9	6.9	10	31.6	4.1	1
2021-01-21	GST		1	4.33	,			5.91	7.1				1
2021-01-22	GST		1	3.72				5.89	7				1
2021-01-25	GST		1	3.35				6.03	6.6				1
2021-01-26	GST		1	2.76				5.89	6.1				1
2021-01-27	GST		1	2.78	1,200			5.84	6.3				1
2021-01-28	GST		1	6.45				5.83	5.9				1
2021-01-29	GST		1	4.23				5.61	5.8				2
2021-02-01	GST		1	3.13				5.84	5.7				2.4

Analytical Data GST

2021-02-02	GST			3	3.71				5.89	5.4				1
2021-02-03	GST			1	2.95				5.9	5.4				
2021-02-04	GST			1	3.81				5.84	5.3				1
2021-02-05	GST			1	7.95				5.83	4.4				1
2021-02-08	GST			1	2.95				6.04	5.3				1
2021-02-09	GST			3	3.54				5.94	5.3				1
2021-02-10	GST			3	3.01	6,500			6	5.3				1
2021-02-11	GST			3	3.51				6.29	5.1				1
2021-02-12	GST			3	2.84				6.01	5.2				1
2021-02-16	GST			1	2.85				6.22	5.1				1
2021-02-17	GST			1	3.15	3,100			6.23	4.9				1
2021-02-18	GST			1	2.94				6.15	5				1
2021-02-19	GST			1	7.49				6.53	4.6				1
2021-02-22	GST			1	8.46				6.31	4.2				1
2021-02-23	GST			1	3.63				6	4.8				1
2021-02-24	GST			1	5	560			5.95	4.6				1
2021-02-25	GST			1	3.04				5.96	4.8				1
2021-02-26	GST			1	7.68				6.19	4.7				1
2021-03-01	GST			1	4.13				6.19	5.3				1
2021-03-02	GST			1	3.56				6.15	5.3				1
2021-03-03	GST			1	5.02	480			5.89	5.3				1
2021-03-18	GST				3.64	850			6.14	5.7				
2021-04-01	GST				2.72	840			5.99	7.9				
2021-04-15	GST				3.65				5.95	9.2				
						GEOME AN								
Count		1	41	101	147	109	41	41	147	147	41	41	41	100
Average		220.0	15.6	2.0	4.8	2187.2	17.7	0.6	5.8	11.5	17.1	35.5	3.2	2.4
standard deviation		0	12.7 93	2.04	1.9		13.3	0.99	0.87	6.74	12.3	8.78	1.0 6	2.81
confidence interval			1.34										0.1	
(95%)			76	0.14	0.11		1.4	0.1	0.05	0.37	1.3	0.92	1	0.19
Upper limit			16.9	2.2	4.9		19.1	0.8	5.9	11.9	18.4	36.4	3.3	2.6
Lower limit			14.2	1.9	4.7		16.3	0.5	5.8	11.2	15.8	34.6	3.1	2.2

Sample											
	Alkalinity	NH4	BOD5	DO	Fecal Coli	pН	Temp	τκν	TN	ТР	TSS
2019-01-30	140	33	74	2.9	4600000	7.23	7.56	39	39	4.2	53
2019-01-31	140	30	110	1.6	4600000	7.16	6.87	40	40	5.5	190
2019-02-01	150	31	120	3.11		7.4	6.05	45	45	5.3	130
2019-02-02	150	29	160	2.15		7.29	7.16	42	42	5.1	160
2019-02-04			150	1.79	9900000	7.17	6.92				150
2019-02-05		27	230	1.78	9400000	7.22	7.04	40	40		150
2019-02-06			180	3.45	7500000	7.13	7.2				180
2019-02-07	220	31	180	4.3	5800000	7.04	6.52	45	45	4.5	190
2019-02-11			240	1.86	5200000	6.93	6.79				170
2019-02-12		30	270	1.96	7200000	7.05	6.48	54	54		220
2019-02-13			200	3.98	6700000	7.31	6.28				220
2019-02-14	170	28	110	2.31	11000000	7.15	6.39	45	45	5.3	150
2019-02-19		32	190	2.47	500000	7.08	6.52	49	49		200
2019-02-20	180	27	160	1.77	3800000	7.22	6.58	49	49	6.9	220
2019-02-21		31	410	2.22	5200000	7.35	6.89	57	57		430
2019-02-25			250	2.14	2300000	7.07	6.94				260
2019-02-26			200	2.01	3800000	6.97	6.52				230
2019-02-27		33	200	1.74	2600000	6.97	6.01	47	47	5.8	230
2019-02-28		37	180	0.62	4300000	7.27	6.38	47	47		240
2019-03-04			220	2.7	1400000	6.75	5.81				130
2019-03-05		23	170	1.9	1500000	6.62	5.98	30	30		160
2019-03-06	100	23	150	0.76	1200000	7.21	5.87	33	33	4.1	110
2019-03-07		22	140	0.33	960000	6.85	6.02	31	31		210
2019-03-11			270	0.2	3300000	7.21	6.3				250
2019-03-12		29	130	0.74	3400000	7.02	5.93	42	42		280
2019-03-13	170	31	410	0.82	500000	6.91	5.95	48	48	6.3	330
2019-03-14		33	200	0.34	4700000	6.94	6.09	38	38		310
2019-03-18			430	0.35	4400000	6.97	6.43				350
2019-03-19	150	34	270	0.39	4700000	6.92	5.51	47	47		470
2019-03-20	190	39	250	0.58	700000	7.35	6.39	51	51	7.1	170
2019-03-21		35	190	0.54	520000	7.25	6.12	48	48		140
2019-03-25		25	330	1.22	3900000	6.82	6.77	10	10		240
2019-03-26	100	35 35	350 330	0.59	400000	6.77	6.64		46	6.6	260
2019-03-27 2019-03-28	190	32	360	0.47	4000000 2300000	6.8	6.86 7.28	42 52	42 52	6.6	220
2019-03-28	170	35	350	0.58	6900000	6.77	7.20	52	52	5.8	270 350
2019-04-01	170	35	260	0.07	090000	7.03	7.1	54	54	5.0	150
2019-04-02	160	35	160	0.07	1300000	6.93	7.29	50	50	6	290
2019-04-03	100	55	180	0.28	2500000	6.91	7.44	50	50	0	230
2019-04-05	200	35	350	0.63	2300000	6.67	7.33	45	45	6.8	330
2019-04-08	180		330		2300000		7.18			8	
2019-04-09	180	30	150			6.92	7.45		41	5.5	
2019-04-10	230	31	130			7.43	8.5		42	4.8	
2019-04-11	220	31	240		3800000		9		42	5.6	
2019-04-16	160	31	190		3500000	6.72	9.8			2.0	140
2019-04-17			320			7.17	10.5				300
2019-04-18	190	29	220		2400000	7.17	9.9		42		240
2019-04-22			260								270
2019-04-23	150	22	380	0.08	3800000	6.93	10.7	39	39		250
2019-04-24				0.04		7.1	10.3				
2019-04-25	280	24	270	-0.04		6.8	11.06		42		250
2019-04-29				0.02	670000	7.01	11.3				
2019-04-30	170	26	220		3700000		11.2				220
2019-05-01		18	170		3900000	7.07	11.4	24	24	3	
2019-05-02	150	19	200		3000000			28	28		60
2019-05-06					5300000						
2019-05-07	190	31	410		4900000			52	52		390
2019-05-09	180	33	240		7500000			47	47	5.4	210
2019-05-14	220		320		4800000			54	54		290

Sample											
	Alkalinity	NH4	BOD5	DO	Fecal Coli	рН	Temp	TKN	TN	ТР	TSS
2019-05-15	Aikainity	33	220	50	2000000	P		51	51	5.8	170
2019-05-16	230	36	250		2400000			58	58	5.0	310
2019-05-20					5300000						010
2019-05-21	170	28	260		500000			42	42		60
2019-05-22		31	290		7700000			52	52	4.8	220
2019-05-23	160	28	280		7200000			46	46		210
2019-05-28	160	26	170		5900000			42	42		250
2019-05-30	160	29	180		7500000			48	48		320
2019-06-04	190	34	160		17000000			46	46		72
2019-06-05		44	280		8000000			58	58	6.9	190
2019-06-11	180	31	210		7700000			51	51		270
2019-06-12	160	28	190		5300000			43	43		220
2019-06-13	190	31	150		6500000			47	47		200
2019-06-18	180	27	190		6500000			46	46		220
2019-06-19	190	30	151		6400000			46	46	4.9	190
2019-06-20	190	27	150		3600000			43	43		200
2019-06-25	190	28	240		3900000			46	46		220
2019-06-26					4600000						
2019-06-27	190	32	130		9400000			39	39		130
2019-07-02	180	29	230		5700000			43	43	6.7	290
2019-07-09	130	25	150		5700000			39	39		120
2019-07-10	150	29	140		2500000			18	18		110
2019-07-11	160	27			2200000			42	42		
2019-07-16		27	94		14000000			43	43		
2019-07-17	220	34	76		5700000			48	48	4.8	150
2019-07-18		28	134		4400000			44	44		97
2019-07-23		35	190		9300000			46	46		20
2019-07-25		26	82		6600000			38	38		66
2019-07-30		39	170		11000000			60	60		380
2019-07-31	220	34	120		9900000			55	55	5.2	210
2019-08-01		32	110		9300000			47	47		210
2019-08-06		36	167		8500000			53	53		220
2019-08-07	220	32	110		900000			49	49		140
2019-08-08					11000000						
2019-08-13	210	38	140		630000			45	45		100
2019-08-14	210	37	140		9900000			51	51	5.5	190
2019-08-15	220	33	135		300000			52	52		360
2019-08-20	190	28	210		1100000			44	44		130
2019-08-21	200	31	0		5100000			41	41		120
2019-08-22	180				6300000			46			130
2019-08-27		28			200000			44	44		250
2019-08-28	170	15			600000			46			240
2019-08-29	170	22	86		3500000			34	34		180
2019-09-03	100	20	240		4200000			A A	A A		140
2019-09-04	180	30	240		1300000			44	44		140
2019-09-05	140	26			3500000			45	45		210
2019-09-10 2019-09-12	150	28	200		4600000			40	40 42		230
2019-09-12	170	28	170		3200000 7500000			42	42		240
2019-09-16	180 170	34 31	170 240		9800000			43 43	43		10
2019-09-17		31	150		6800000			43	43		18
2019-09-18	160 150	34			11000000			47	47		140 260
2019-09-19	150	28			5300000			48	48		<u>260</u> 79
2019-09-24	100	20	140		1000000			50	30		/9
2019-09-25	200	20	190		6100000			48	48		280
2019-09-26	150	29 24	400		590000			48	48 49		280
2019-10-01	150	24 30	400		3200000		-	49	49		120
							-				
2019-10-03	160	31	270		4900000			45	45		210

Sample											
	Alkalinity	NH4	BOD5	DO	Fecal Coli	pН	Temp	ткл	TN	ТР	TSS
2019-10-07	180	40	300	20		pn	Temp	58	58	••	120
2019-10-08	150	27	101		3100000			40	40		60
2019-10-09	150	27	120		3600000			40	40	5.2	130
2019-10-10	150	21	130		500000			40		5.2	150
2019-10-11	150	29	120					41	41		110
2019-10-11	120	26	120					40	40		130
2019-10-14	120	20	95		3300000			35	35		83
2019-10-15	140	25	200		4400000			43	43		190
2019-10-10	140	27	110		4400000			40	40		190
2019-10-22	180	27	110		5700000			38	38		190
2019-10-24	140	26	160		7700000			40	40		160
2019-10-24	140	18	84		4700000			26	26		130
2019-10-25	180	29	180		5400000			37	37		150
2019-11-05	170	29	240		8500000			47	47		260
2019-11-03	170	29	240		7200000			40	40		180
2019-11-07		29	240		5100000			40	40		46
2019-11-12	120	29	270		5500000			38	38	4.6	76
2019-11-14	120 93	28 17	170		7400000			26	26	4.0	25
2019-11-19	190	28	170		890000			38	37		100
2019-11-21		28	310		2400000			38	37		
2019-11-26	150		310		1300000			39			180
2019-12-02	170	20	160		1900000			32	32		100
	170	20	160				-	32	32		180
2019-12-04	150	24	160		200000			24	24		150
2019-12-05	150	24	160		4200000			34	34		150
2019-12-09	100	22	100		1900000			24	24		170
2019-12-10	160	23	180		1600000			34	34		170
2019-12-11	110	25	107		1300000			24	24	2	120
2019-12-12	110	25	197		2500000			34	34	3	130
2019-12-17	160	25	270		2800000			39	39		200
2019-12-18	100	27	100		1100000			20	24		100
2019-12-19	190	27	100		1900000			36	34		100
2019-12-23	99	26	400		70000			41	41		200
2019-12-26	130	24	150		1400000			36	36		170
2019-12-30	150	29	140		300000			40	40		140
2020-01-02	98	21	130		200000			36	36		220
2020-01-07	180	27	110		2800000			37	37	4.0	88
2020-01-09	250	36	140		2700000			44	44	4.8	120
2020-01-14	210	30	150		200000			42	42		120
2020-01-16	210	35	200		4200000			46	46		170
2020-01-21	180	29	200		2500000			37	37		210
2020-01-23	140				1700000			39			120
2020-01-24	220	27	190		020000			41	42.13		140
2020-01-28	140	33	200		820000			40	40		130
2020-01-30	150		410		1300000			44	44		170
2020-02-04	130		150		1100000			45	45		190
2020-02-06	140	30	280		640000			43	43		44
2020-02-11	140		110		1100000		_	45	45	4.6	230
2020-02-13	140	28	180		940000		_	44	44		170
2020-02-18	150		320		1700000			50	50		170
2020-02-20	140	33	200		4200000			44	44		84
2020-02-25	140	31	180		5200000			45	45		160
2020-02-27	160	32	300		3900000			45	45		110
2020-03-03	120	30	250		2600000			45	45		200
2020-03-05	130	34	220		2800000			45	45		96
2020-03-10	140	36	240		290000			54	54	1.9	130
2020-03-12	160	37	250		650000			55	55		190
2020-03-17	130		230		1400000			46	46		150
2020-03-19	140	24	12		600000			43	43		130
2020 04 16		1	1	1	1	1		43	43.1		1
2020-04-16 2020-04-28			200					39	39		130

Sample											
	Alkalinity	NH4	BOD5	DO	Fecal Coli	pН	Temp	TKN	TN	ТР	TSS
2020-04-29	Antaniney	31	150		860000	P		45	45	3.5	170
2020-04-30	150	32	160		1600000			48	48	515	180
2020-05-05	140	31	200		1000000			50	50		280
2020-05-07	160	34	150		1100000			54	54		170
2020-05-12	150	30	180		1100000			47	47		200
2020-05-13	150	33	210		1000000			53	53.34		220
2020-05-13	150	33	180		1100000			53	53.54		210
2020-05-19	140	31	150		1100000			48	48		140
2020-05-21	140	51	170								90
2020-05-26			150					42	42		68
2020-05-27	130		150					72			00
2020-06-02	150		250		1700000			43	43		170
2020-06-02			230		1700000			45		1.1	170
2020-06-03		29	260		1500000			44	44	1.1	140
2020-06-04		29	200		420000			44	44		140
2020-06-08			200		1600000			40	40		150
2020-06-09		24	220		990000			40	40	1.3	310
2020-06-10	130	5.5	150		1500000			36	36	1.5	130
2020-06-11	130	5.5	250		3800000			50	50		200
2020-06-12			200		2200000						330
2020-06-15			230		2200000			40	40		300
2020-06-10			230					40	40	1.4	500
2020-06-17		27	410		5200000			55	55	1.4	530
2020-06-18		27	160		100000			55	55		170
2020-06-22		23	110		1400000			37	37		68
2020-06-23	140	23	100		1600000			35	35	1.4	96
2020-06-24	140	29	150		2000000			40	41.77	1.4	
2020-06-25		29	200		800000			40	41.//	1.4	82
2020-06-20			140		3300000						140
2020-06-29			140		3300000			45	45		140
2020-00-30		28	160		1100000			39	39	2.8	140
2020-07-01		20	170		1100000			47	47	2.0	170
2020-07-07		20			260000					1.4	
2020-07-08	150	28 29	180 150		3600000 1400000			45 42	45 42.6	1.4	140 140
2020-07-09	150	29	160		2700000			42	42.0		140
2020-07-10			200								
2020-07-13		20	200		<u>680000</u> 1700000			40	40	1.5	240 240
2020-07-14		28 29	360		1900000			48 51	48 51	1.5	420
2020-07-13	190	32	160		1900000			41	43.1		420
2020-07-20	190	52	180					41	43.1		36
2020-07-21	180	30			1900000			40	42.02	1.5	
2020-07-22	180		1/0		2500000			40	42.02	1.3	56
2020-07-23	190		100		2500000			40	40 47.22		160
2020-07-24	170		190		1600000			40	47.22		86
2020-07-27	190	30	120		3100000			43	44.90		160
2020-07-28		32	170		2500000			49	49	1.6	130
2020-07-29		33	170		2900000			49	49	1.0	62
2020-07-30		33	210		1400000			<u> </u>			150
2020-07-31		36	130		3900000			50	50		120
2020-08-03		29	150		1600000			50	50		56
2020-08-04		29	120		1200000			28	28	1	60
2020-08-05	170	20	120		2200000			28	 35.23	1	62
2020-08-06	1/0	25	130		2200000			54	55.25		
		40	140		2500000			53	53		74
2020-08-10 2020-08-11		35	190		5200000			53	55		120 110
		35						<u> </u>		1.5	
2020-08-12			200		2700000					1.5	120
2020-08-13		43	190		2400000						140
2020-08-14		43	190		3300000						120
2020-08-17		45	210		1400000						140

Sample											
	Alkalinity	NH4	BOD5	DO	Fecal Coli	рH	Temp	TKN	TN	ТР	TSS
2020-08-18	, . ,	41	190		960000						98
2020-08-19		38	180		1200000			46	46	1.4	86
2020-08-20		39	160		4600000			10	10		150
2020-08-21		42	190		4900000						160
2020-08-24	230	37	170		2600000			52	53.18		150
2020-08-25	250	39	190		1400000			52	55.10		140
2020-08-26	240	38	210		6400000			55	62.26	6.2	240
2020-08-27	240	41	220		5900000			55	02.20	0.2	190
2020-08-28	230	38	220		5500000			60	61.1		190
2020-08-31	220	33	150		5400000			47	47.31		100
2020-08-51	220	33	97		8700000			47	47.51		52
2020-09-01	230	36	180		6100000			50	50.86	6.6	
2020-09-02	230	32	160		5900000			50	50.00	0.0	140
2020-09-03	180	26	150		3500000			39	40.06		76
2020-09-04	100	20	140		3300000			39	40.00		110
2020-09-07		21	140		5800000			33	33		120
2020-09-08		21	130		400000			36	38.46	4.9	120
2020-09-09		24	140		6400000			00	30.40	4.9	130
2020-09-10		24	180		3300000			1			74
2020-09-11	260	20 44			4700000			62	64.02		
2020-09-14	260	44 31	260 290					62	64.83		150
2020-09-15	200	31	310		540000 820000			48	50.4	6.5	210 250
	200	30						40	50.4	0.5	
2020-09-17	200		150		2700000			4.4	46.96		180
2020-09-18	200	29	170		2800000			44 30	46.86		160
2020-09-21		19	120		300000			30	30		82
2020-09-22	100	17	120		2600000			21	22.16	4 1	100
2020-09-23	190	19	130		3400000			31	32.16	4.1	120
2020-09-24	200	30	130		3400000			45	46.11		160
2020-09-25	100	30	120		1600000			20	10.00		140
2020-09-28	190	26	110		4300000			39	40.06		110
2020-09-29	100	26	130		400000			20	40.00	F 0	130
2020-09-30	190	26	150		290000			39	40.82	5.8	160
2020-10-01	200	27	110		1900000			38	39.3		120
2020-10-02	100	26	87		2100000			26	27.26		110
2020-10-05	190	27	93		2500000			36	37.26		98
2020-10-06		26	140		190000			20	20.44	F 2	100
2020-10-07		26	120		2100000			38	39.44	5.2	130
2020-10-08		26	110		2200000						96
2020-10-09		26	140		2900000						130
2020-10-12			98					07			96
2020-10-13		24	110		3900000			37	37		94
2020-10-14		23	120		3600000			34	35.15	5.6	
2020-10-15		25	140		3200000						110
2020-10-16		25	170		2800000						120
2020-10-19		41	200		11000000			60	60		180
2020-10-20		26	190		5800000				07.40	- - -	140
2020-10-21		25	110		4500000			36	37.18	5.2	
2020-10-22		29	120		8300000						100
2020-10-23		30	160		1800000						110
2020-10-26		30	160		550000			42	42		130
2020-10-27		27	170		11000000						110
2020-10-28	190	28	130		8200000			37	38.34	5.2	
2020-10-29	180				1400000			37	38.22		130
2020-10-30		21	210		2500000						74
2020-11-02		24	110		4300000			30	30		62
2020-11-03		25	120		5400000						90
2020-11-04		24	100		6600000			32	33.3	4.7	100
2020-11-05		23	91		4400000						98

Sample Date Alkalinity NH4 BOD5 DO Fecal Coli pH Temp TKN TN 2020-11-09 150 3700000 45 45 45 2020-11-10 27 130 39 40.01 2020-11-11 200 39 40.01 2020-11-12 140 1900000 1 1 2020-11-13 160 1 1 2 1 2020-11-16 150 52 52 2020-11-17 190 1800000 1 1 2020-11-18 160 26 250 2500000 40 40.97 2020-11-20 170 25 160 37 37 37 2020-11-23 190 1100000 37 37 37 2020-11-24 23 200 39 39.87 39 2020-11-25 160 37 37 37 2020-11-20 200 37 37 <	5.4 2 7 5.9	130 110 120 110 96
2020-11-09 150 3700000 45 45 2020-11-10 27 130 39 40.01 2020-11-11 200 1 200 1 200 2020-11-12 140 1900000 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 2000 1 200 1 200 1 200 1 200 1 200 200 1 200 2	5 5.4 2 7 5.9	160 86 130 110 120 110 96 150
2020-11-10 27 130 39 40.01 2020-11-11 200 140 19000000 1900000 19000000	5.4 2 7 5.9	86 130 110 120 110 96 150
2020-11-11 200 Image: constraint of the system 2020-11-12 140 1900000 Image: constraint of the system 2020-11-13 160 Image: constraint of the system 52 52 2020-11-16 150 52 52 52 2020-11-17 190 1800000 Image: constraint of the system 40 40.97 2020-11-18 160 26 250 2500000 40 40.97 2020-11-19 210 2600000 Image: constraint of the system 37 37.92 2020-11-20 170 25 160 Image: constraint of the system 39 39.87 2020-11-24 23 200 Image: constraint of the system 37 37 2020-11-25 160 Image: constraint of the system Image: constraint of the system 37 37 2020-11-30 200 Image: constraint of the system Image: constraint of the system Image: constraint of the system 2020-12-02 19 160 2400000 Image: constraint of the system	2 5.9	130 110 120 110 96 150
2020-11-12 140 1900000 1 2020-11-13 160 52 52 2020-11-16 150 52 52 2020-11-17 190 1800000 40 40.97 2020-11-18 160 26 250 2500000 40 40.97 2020-11-19 210 2600000 37 37.92 37.92 2020-11-20 170 25 160 37 37.92 2020-11-23 190 1100000 37 37 2020-11-24 23 200 39 39.87 2020-11-25 160 37 37 37 2020-11-20 190 1200000 37 37 2020-12-01 1200000 36 36.99	2 5.9	110 120 110 96 150
2020-11-13 160 52 52 2020-11-16 150 52 52 2020-11-17 190 1800000 7 2020-11-18 160 26 250 2500000 40 40.97 2020-11-19 210 2600000 7 7 7 2020-11-20 170 25 160 37 37 37 2020-11-23 190 1100000 37 <td>2 5.9</td> <td>120 110 96 150</td>	2 5.9	120 110 96 150
2020-11-16 150 52 52 2020-11-17 190 1800000 2020-11-18 160 26 250 2500000 40 40.97 2020-11-18 160 26 250 2500000 40 40.97 2020-11-19 210 2600000 2020-11-20 37 37.92 2020-11-20 170 25 160 37 37.92 2020-11-23 190 1100000 37 37 2020-11-24 23 200 39 39.87 2020-11-25 160 2020-11-30 200 37 37 2020-11-30 200 37 37 37 37 2020-12-01 1200000 36 36.99 36 36.99	2 5.9	110 96 150
2020-11-17 190 1800000 40 40.97 2020-11-18 160 26 250 2500000 40 40.97 2020-11-19 210 2600000 37 37.92 2020-11-20 170 25 160 37 37.92 2020-11-23 190 1100000 37 37 2020-11-24 23 200 39 39.87 2020-11-25 160 37 37 2020-11-30 200 37 37 37 2020-12-01 1200000 36 36.99	2	96 150
2020-11-18 160 26 250 250000 40 40.97 2020-11-19 210 2600000 2020-11-20 170 25 160 37 37.92 2020-11-20 170 25 160 37 37.92 2020-11-23 190 1100000 37 37 2020-11-24 23 200 39 39.87 2020-11-25 160 2020-11-20 2020-11-30 200 37 37 37 2020-12-01 1200000 36 36.99 2020-12-02 19 160 2400000 36 36.99	2	150
2020-11-20 170 25 160 37 37.92 2020-11-23 190 1100000 37 37 2020-11-24 23 200 39 39.87 2020-11-25 160 37 37 37 2020-11-30 200 37 37 37 2020-12-01 1200000 36 36.99	_	150
2020-11-23 190 1100000 37 37 2020-11-24 23 200 39 39.87 2020-11-25 160 37 37 2020-11-30 200 37 37 2020-12-01 1200000 36 36.99	_	
2020-11-24 23 200 39 39.87 2020-11-25 160 1 1 1 2020-11-30 200 37 37 2020-12-01 1200000 36 36.99	7	130
2020-11-25 160 37 37 2020-11-30 200 37 37 2020-12-01 1200000 36 36.99		150
2020-11-30 200 37 37 2020-12-01 1200000 200000 36 36.99	5.1	140
2020-12-01 1200000 36 36.99 2020-12-02 19 160 2400000 36 36.99		120
2020-12-02 19 160 2400000 36 36.99	,	130
	4.5	110
2020-12-03 1800000		
2020-12-04 200		120
2020-12-07 140 30 30)	82
2020-12-08 160 720000		100
2020-12-09 23 260 930000 42 44.55	5.6	130
2020-12-10 160 1100000		98
2020-12-11 200 200		130
2020-12-12 180		94
2020-12-14 39 39)	
2020-12-15 560000		
2020-12-16 180 25 180 1700000 41 42.725	5.2	120
2020-12-17 830000		
2020-12-18 180		120
2020-12-19 210		160
2020-12-20 180		140
<u>2020-12-21</u> <u>190</u> <u>500000</u> <u>36</u> <u>36</u>	<u>,</u>	110
2020-12-22 23 220 38 39.278	5.6	120
2020-12-28 320000 37 37		
2020-12-29 24 180 500000 36 36	ò	100
2020-12-30 24 180 650000 37 39.06	5.1	140
2021-01-03 150		100
2021-01-04 210 280000 38 38	3	140
2021-01-05 140		80
2021-01-06 28 140 410000 40 42.04	5.3	
2021-01-07 220		150
2021-01-08 180		60
2021-01-11 260 480000 46 46		120
2021-01-12 29 200 600000 39 39		120
2021-01-13 200 32 170 480000 42 43.125	5.7	100
2021-01-14 210 34 130 44 45.41		88
2021-01-16 360		170
2021-01-17 240		120
2021-01-18		100
2021-01-19 220 310000 40 40)	90
2021-01-20 28 170 480000 40 41.98	5.6	84
2021-01-21 160		76
2021-01-22 160	L	78
2021-01-25 23 180 2500000 37 37	7	100
2021-01-26 25 230 1200000		110
2021-01-27 26 180 1900000 40 41.14	5.4	
2021-01-28 27 180 290000		120
2021-01-29 28 160 48000		68

Sample											
Date	Alkalinity	NH4	BOD5	DO	Fecal Coli	pН	Temp	TKN	TN	ТР	TSS
2021-02-02		36	190		900000			50	51.46	5.8	110
2021-02-03		31	110		2600000			41	42.41	4.6	66
2021-02-04		39	310		2000000						250
2021-02-05		41	330		590000						160
2021-02-08		43	200		1300000			56	56		66
2021-02-09		39	220		1800000			57	59.12	6.7	92
2021-02-10		43	250		2800000			59	60.78	7	120
2021-02-11		43	220		2500000						130
2021-02-12			120								
2021-02-16		26	280		1100000			40	41.19	5.5	150
2021-02-17		22	210		1600000			33	34.86	4.2	96
2021-02-18		26	200		1300000						110
2021-02-19		26	180		790000						100
2021-02-22		27	120		1900000			37	37		80
2021-02-23		29	170		1900000			36	37.31	4.9	100
2021-02-24	170	26	260		3000000			42	43.75	5.3	150
2021-02-25		30	250		1600000						280
2021-02-26		28	230		700000						200
2021-03-01		29	250		2300000			46	46		170
2021-03-02		26	220		2700000			38	39.15	5.4	150
2021-03-03		30	260		4300000			45	46.18		170
2021-03-04		29	250		3100000						200
2021-03-05		33	310		800000						110
2021-03-08		39	270		2900000						170
2021-03-09		29	240		4000000			49	50.18	6.6	180
2021-03-10		32	240		1600000			51	52.26	6.2	160
2021-03-11		36	330		3600000						260
2021-03-12		32	260		450000						220
2021-03-15		36	340		4000000			54	54		220
2021-03-16		37	260		3800000			52	53.31	6.9	180
2021-03-17	170	34	230		3100000			46	47.23	6.2	170
2021-03-18		35	330		1800000						340
2021-03-19		32	240		1000000						210
2021-03-22		25	110		1100000			36	36		100

SINCE 1966

& ASSOCIATES. INC.

Appendix F

Phosphorous Sorption Capacities

Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
Length Width Height Unfolded area (L x (W+(2 x H)))	30 5.2 3 336	
Unsaturated soil under leachfield	9	ft
Unsaturated soil volume	3,024	
Soil Density	110	lbs/cf
Soil mass	151,018,560	gms
50% soil mass	75,509,280	gms
soil P sorption	6	_ mg/100 gms soi
50% soil mass P sorption	4,530,557	mg

	Lot 2					
Bedrooms	3					
gpd/Bedroom	150					
gpd	450					
L/day = (gpd x 3.8) =	1,710	L/day				
P conc to ground	12	mg/L				
1 day P to ground	20,520	mg				
183 days P to ground	3,755,160	mg				
		_				
Leachfield type	Geomatrix GST 6236	_				
Length	40					
Width	5.2					
Height	3					
Unfolded area (L x (W+(2 x H)))	448					
Unsaturated soil under leachfield	6	ft				
Unsaturated soil volume	2,688					
Soil Density	110	lbs/cf				
Soil mass	134,238,720	gms				
50% soil mass	67,119,360	gms				
soil P sorption	6	mg/100 gms soil				
50% soil mass P sorption	4,027,162	mg				
Excess P sorption capacity - discharge = 272,002 mg						

	Lot <u>3</u>					
Bedrooms	3					
gpd/Bedroom	150					
gpd	450					
L/day = (gpd x 3.8) =	1,710	L/day				
P conc to ground	12	mg/L				
1 day P to ground	20,520	mg				
183 days P to ground	3,755,160	mg				
Loochfield type	Coomptriv CST (22)	,				
Leachfield type	Geomatrix GST 6236	-				
Length	20	_				
Width	5.2	-				
Height	3	-				
Unfolded area (L x (W+(2 x H)))	224					
Unsaturated soil under leachfield	12	ft				
Unsaturated soil volume	2,688					
Soil Density	110	lbs/cf				
Soil mass	134,238,720	gms				
50% soil mass	67,119,360	gms				
soil P sorption	6	mg/100 gms soil				
50% soil mass P sorption	4,027,162	mg				
Excess P sorption capacity - discharge = 272,002 mg						

Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
Width Height	5.2 3	-
		_
Unfolded area (L x (W+(2 x H)))	336	
Unsaturated soil under leachfield	9	ft
Unsaturated soil volume	3,024	7
		—
Soil Density	110	lbs/cf
Soil mass	151,018,560	gms
50% soil mass	75,509,280	gms
soil P sorption	6	mg/100 gms s
50% soil mass P sorption	4,530,557	mg

3 150 450 1,710 12 20,520 3,755,160 Geomatrix GST 623 20 5.2 3	L/day mg/L mg mg 36
450 1,710 20,520 3,755,160 Geomatrix GST 623 20 5.2	mg/L mg mg
1,710 12 20,520 3,755,160 Geomatrix GST 623 20 5.2	mg/L mg mg
12 20,520 3,755,160 Geomatrix GST 623 20 5.2	mg/L mg mg
20,520 3,755,160 Geomatrix GST 623 20 5.2	mg mg
3,755,160 Geomatrix GST 623 20 5.2	mg
Geomatrix GST 623 20 5.2	
20 5.2	36
20 5.2	
5.2	
2	
5	
224	
15	ft
3,360	
110	lbs/cf
	gms
	gms
6	mg/100 gms so
5,033,952	mg
	3,360 110 167,798,400 83,899,200 6

Lot 6							
Bedrooms	3						
gpd/Bedroom	150						
gpd	450						
L/day = (gpd x 3.8) =	1,710	L/day					
P conc to ground	12	mg/L					
1 day P to ground	20,520	mg					
183 days P to ground	3,755,160	mg					
Leachfield type	Geomatrix GST 6236						
Length	22						
Width	5.2						
Height	3						
Unfolded area (L x (W+(2 x H)))	246						
Unsaturated soil under leachfield	11	ft					
Unsaturated soil volume	2,710						
		-					
Soil Density	110	lbs/cf					
Soil mass	135,357,376	gms					
50% soil mass	67,678,688	gms					
soil P sorption	6	mg/100 gms soil					
50% soil mass P sorption	4,060,721	mg					
Excess P sor	Excess P sorption capacity - discharge = 305,561 mg						

Lot 7					
Bedrooms	3				
gpd/Bedroom	150				
gpd	450				
L/day = (gpd x 3.8) =	1,710	L/day			
P conc to ground	12	mg/L			
1 day P to ground	20,520	mg			
183 days P to ground	3,755,160	mg			
		_			
Leachfield type	Geomatrix GST 6236	_			
Length	20				
Width	5.2				
Height	3				
Unfolded area (L x (W+(2 x H)))	224				
Unsaturated soil under leachfield	16	ft			
Unsaturated soil volume	3,584				
Soil Density	110	lbs/cf			
Soil mass	178,984,960	gms			
50% soil mass	89,492,480	gms			
soil P sorption	6	mg/100 gms soil			
50% soil mass P sorption	5,369,549	mg			
Excess P sorption capacity - discharge = 1,614,389 mg					

Lot 8							
Bedrooms	3						
gpd/Bedroom	150						
gpd	450						
L/day = (gpd x 3.8) =	1,710	L/day					
P conc to ground	12	mg/L					
1 day P to ground	20,520	mg					
183 days P to ground	3,755,160	mg					
		_					
Leachfield type	Geomatrix GST 6236	_					
Length	20	_					
Width	5.2						
Height	3						
Unfolded area (L x (W+(2 x H)))	224						
Unsaturated soil under leachfield	12	ft					
Unsaturated soil volume	2,688						
Soil Density	110	lbs/cf					
Soil mass	134,238,720	gms					
50% soil mass	67,119,360	gms					
soil P sorption	6	mg/100 gms soil					
50% soil mass P sorption	4,027,162	mg					
Excess P sorp	Excess P sorption capacity - discharge = 272,002 mg						

	<u>Lot 9</u>	
Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
Leachfield type	Geomatrix GST 6236	
Length	20	
Width	5.2	
Height	3	
Unfolded area (L x (W+(2 x H)))	224	
Unsaturated soil under leachfield	18	ft
Unsaturated soil volume	4,032	
Soil Density	110	lbs/cf
Soil mass	201,358,080	gms
50% soil mass	100,679,040	gms
soil P sorption	6	mg/100 gms soil
50% soil mass P sorption	6,040,742	mg
	0,040,742	B
Excess P sor	otion capacity - discharge	= 2,285,582

Lot 10							
Bedrooms	3						
gpd/Bedroom	150						
gpd	450						
L/day = (gpd x 3.8) =	1,710	L/day					
P conc to ground	12	mg/L					
1 day P to ground	20,520	mg					
183 days P to ground	3,755,160	mg					
Leachfield type	Geomatrix GST 6236						
Length	30						
Width	5.2						
Height	3						
Unfolded area (L x (W+(2 x H)))	336						
Unsaturated soil under leachfield	8	ft					
Unsaturated soil volume	2,688						
		1					
Soil Density	110	lbs/cf					
Soil mass	134,238,720	gms					
50% soil mass	67,119,360	gms					
soil P sorption	6	mg/100 gms soil					
50% soil mass P sorption	4,027,162	mg					
Excess P sor	Excess P sorption capacity - discharge = 272,002 mg						

Lot 11		
Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
		_
Leachfield type	Geomatrix GST 6236	
Length	20	
Width	5.2	
Height	3	
Unfolded area (L x (W+(2 x H)))	224	
Unsaturated soil under leachfield	16	ft
Unsaturated soil volume	3,584	
Soil Density	110	lbs/cf
Soil mass	178,984,960	gms
50% soil mass	89,492,480	gms
soil P sorption	6	mg/100 gms soil
50% soil mass P sorption	5,369,549	mg
Excess P sorption capacity - discharge = 1,614,389 mg		

Lot 12		
Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
		_
Leachfield type	Geomatrix GST 6236	
Length	25	
Width	5.2	
Height	3	
Unfolded area (L x (W+(2 x H)))	280	
Unsaturated soil under leachfield	10	ft
Unsaturated soil volume	2,800	
Soil Density	110	lbs/cf
Soil mass	139,832,000	gms
50% soil mass	69,916,000	gms
soil P sorption	6	mg/100 gms soil
50% soil mass P sorption	4,194,960	mg
Excess P sorption capacity - discharge = 439,800 mg		

	Lot 13	
Bedrooms	3	_
gpd/Bedroom	150	_
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
Leachfield type	Geomatrix GST 6236	
Length	20	_
Width	5.2	_
Height	3	_
Unfolded area (L x (W+(2 x H)))	224	
Unsaturated soil under leachfield	17	ft
Unsaturated soil volume	3,808	
Coil Donoitu	110	llha /of
Soil Density	110	lbs/cf
Soil mass	190,171,520	gms
Soil mass 50% soil mass	190,171,520 95,085,760	gms gms
Soil mass	190,171,520	gms

<u>Lot 14</u>		
Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
		_
Leachfield type	Geomatrix GST 6236	
Length	20	
Width	5.2	
Height	3	
Unfolded area (L x (W+(2 x H)))	224	
Unsaturated soil under leachfield	14	ft
Unsaturated soil volume	3,136	
Soil Density	110	lbs/cf
Soil mass	156,611,840	gms
50% soil mass	78,305,920	gms
soil P sorption	6	mg/100 gms soil
50% soil mass P sorption	4,698,355	mg
Excess P sorption capacity - discharge = 943,195 mg		

<u>Lot 15</u>		
Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
		_
Leachfield type	Geomatrix GST 6236	
Length	20	
Width	5.2	
Height	3	
Unfolded area (L x (W+(2 x H)))	224	
Unsaturated soil under leachfield	16	ft
Unsaturated soil volume	3,584	
Soil Density	110	lbs/cf
Soil mass	178,984,960	gms
50% soil mass	89,492,480	gms
soil P sorption	6	mg/100 gms soil
50% soil mass P sorption	5,369,549	mg
Excess P sorption capacity - discharge = 1,614,389 mg		

<u>Lot 16</u>		
Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
		_
Leachfield type	Geomatrix GST 6236	
Length	24	
Width	5.2	
Height	3	
Unfolded area (L x (W+(2 x H)))	269	
Unsaturated soil under leachfield	10	ft
Unsaturated soil volume	2,688	
		-
Soil Density	110	lbs/cf
Soil mass	134,238,720	gms
50% soil mass	67,119,360	gms
soil P sorption	6	mg/100 gms soil
50% soil mass P sorption	4,027,162	mg
Excess P sorption capacity - discharge = 272,002 mg		

Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
Leachfield type Length	Geomatrix GST 6236 20	-
Width	5.2	-
Height	3.2	-
Unfolded area (L x (W+(2 x H)))	224	
Unsaturated soil under leachfield	16	ft
Unsaturated soil volume	3,584	
Sail Dansity	110	lbs /of
Soil Density Soil mass		lbs/cf
	178,984,960	gms
50% soil mass	89,492,480	gms
soil P sorption	6	mg/100 gms soi
50% soil mass P sorption	5,369,549	mg

<u>Lot 18</u>		
Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
		_
Leachfield type	Geomatrix GST 6236	
Length	20	
Width	5.2	
Height	3	
Unfolded area (L x (W+(2 x H)))	224	
Unsaturated soil under leachfield	15	ft
Unsaturated soil volume	3,360	
		_
Soil Density	110	lbs/cf
Soil mass	167,798,400	gms
50% soil mass	83,899,200	gms
soil P sorption	6	mg/100 gms soil
50% soil mass P sorption	5,033,952	mg
Excess P sorption capacity - discharge = 1,278,792 mg		

Lot #94 Stoddards Wharf Road		
Bedrooms	3	
gpd/Bedroom	150	
gpd	450	
L/day = (gpd x 3.8) =	1,710	L/day
P conc to ground	12	mg/L
1 day P to ground	20,520	mg
183 days P to ground	3,755,160	mg
	· · · · · · · · · · · · · · · · · · ·	,
Leachfield type	Geomatrix GST 6236	
Length	60	
Width	5.2	_
Height	3	
Unfolded area (L x (W+(2 x H)))	672	
Unsaturated soil under leachfield	4	ft
Unsaturated soil volume	2,688	
		_
Soil Density	110	lbs/cf
Soil mass	134,238,720	gms
50% soil mass	67,119,360	gms
soil P sorption	6	mg/100 gms soil
50% soil mass P sorption	4,027,162	mg
Excess P sorption capacity - discharge = 272,002 mg		